[1] Belatti DA, Pugely AJ, Phisitkul P, et al. Total joint arthroplasty: trends in medicare reimbursement and implant prices. J Arthroplasty. 2014;29(8):1539-1544. [2] Jager M, Jennissen HP, Dittrich F, et al. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. Materials(Basel). 2017;10(11):E1302. [3] Perren SM, Regazzoni P, Fernandez AA. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects. Acta Chir Orthop Traumatol Cech. 2017;84(2):85-90. [4] Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest. 1959;11 Supp 38:1-82. [5] Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399-410. [6] Southam JC, Selwyn P. Structural changes around screws used in the treatment of fractured human mandibles. Br J Oral Surg. 1971;8(3):211-221. [7] Esposito M, Hirsch JM, Lekholm U, et al. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998; 106(1):527-551. [8] Branemark R, Branemark P, Rydevik B, et al. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 2001;38(2):175-182. [9] 贺韬,曹聪,董宇启.硬组织工程材料骨整合评价方法与应用[J].国际骨科学杂志,2012,33(2):92-95,117.[10] Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J Oral Pathol. 1982;11(4): 318-326. [11] 罗亚平,李莹莹,胡纯婷,等.胃泌素对大鼠激素性骨坏死的治疗作用[J].上海交通大学学报(医学版),2018,38(3):276-280.[12] He T, Cao C, Xu Z, et al. A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep. 2017; 7(1):16270. [13] Pellegrini G, Francetti L, Barbaro B, et al. Novel surfaces and osseointegration in implant dentistry. J Investig Clin Dent. 2018:e12349. [14] Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25(18):4087-4103. [15] Suo L, Jiang N, Wang Y, et al. The enhancement of osseointegration using a graphene oxide/chitosan/ hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res B Appl Biomater. 2018. doi:10.1002/jbm.b.34156. [16] Bai L, Du Z, Du J, et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials. 2018; 162:154-169. [17] Huang MS, Chen LK, Ou KL, et al. Rapid Osseointegration of Titanium Implant With Innovative Nanoporous Surface Modification: Animal Model and Clinical Trial. Implant Dent. 2015;24(4):441-447. [18] Yang DH, Lee DW, Kwon YD, et al. Surface modification of titanium with hydroxyapatite-heparin-BMP-2 enhances the efficacy of bone formation and osseointegration in vitro and in vivo. J Tissue Eng Regen Med. 2015;9(9):1067-1077. [19] Dundar S, Yaman F, Bozoglan A, et al. Comparison of Osseointegration of Five Different Surfaced Titanium Implants. J Craniofac Surg. 2018. doi: 10.1097/SCS. 0000000000004572. [20] Yan JH, Wang CH, Li KW, et al. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification. Int J Nanomedicine. 2018;13: 3425-3440. [21] Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, et al. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018;105:55-63. [22] Li NB, Sun SJ, Bai HY, et al. Preparation of well-distributed titania nanopillar arrays on Ti6Al4V surface by induction heating for enhancing osteogenic differentiation of stem cells. Nanotechnology. 2018;29(4):045101. [23] Liu P, Hao Y, Zhao Y, et al. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Colloids Surf B Biointerfaces. 2017;160:110-116. [24] Zhang X, Zu H, Zhao D, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 2017;63:369-382. [25] Niehaus AJ, Anderson DE, Samii VF, et al. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep. Am J Vet Res. 2009;70(11):1416-1425. [26] Cunningham BW, Hu N, Zorn CM, et al. Bioactive titanium calcium phosphate coating for disc arthroplasty: analysis of 58 vertebral end plates after 6- to 12-month implantation. Spine J. 2009;9(10):836-845. [27] Wang C, Karlis GA, Anderson GI, et al. Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants. J Biomed Mater Res A. 2009;90(2):419-428. [28] Bai L, Liu Y, Du Z, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018;76:344-358. [29] Mostafa D, Aboushelib M. Bioactive-hybrid-zirconia implant surface for enhancing osseointegration: an in vivo study. Int J Implant Dent. 2018;4(1):20. [30] Ghadami F, Saber-Samandari S, Rouhi G, et al. The effects of bone implants’ coating mechanical properties on osseointegration: In-vivo, in-vitro, and histological investigations. J Biomed Mater Res A. 2018. doi:10. 1002/jbm. a. 36465. [31] Jiang N, Guo Z, Sun D, et al. Promoting Osseointegration of Ti Implants through Micro/Nano-Scaled Hierarchical Ti Phosphate / Ti Oxide Hybrid Coating. ACS Nano. 2018;12(8): 7883-7891. [32] Azzawi ZGM, Hamad TI, Kadhim SA, et al. Osseointegration evaluation of laser-deposited titanium dioxide nanoparticles on commercially pure titanium dental implants. J Mater Sci Mater Med. 2018;29(7):96. [33] Krupa D, Baszkiewicz J, Zdunek J, et al. Effect of plasma electrolytic oxidation in the solutions containing Ca, P, Si, Na on the properties of titanium. J Biomed Mater Res B Appl Biomater. 2012;100(8):2156-2166. [34] Hu H, Liu X, Ding C. Preparation and cytocompatibility of Si-incorporated nanostructured TiO2 coating. Surf Coat Technol. 2010;204(20):3265-3271. [35] 胡红杰,刘宣勇,丁传贤.等离子体电解氧化制备生物活性多孔纳米TiO_2涂层[J].无机材料学报,2011,26(6):585-590.[36] Sowa M, Piotrowska M, Widziolek M, et al. Bioactivity of coatings formed on Ti-13Nb-13Zr alloy using plasma electrolytic oxidation. Mater Sci Eng C Mater Biol Appl. 2015; 49:159-173. [37] Kazek-Kesik A, Kuna K, Dec W, et al. In vitro bioactivity investigations of Ti-15Mo alloy after electrochemical surface modification. J Biomed Mater Res B Appl Biomater. 2016; 104(5):903-913. [38] Chung CJ, Su RT, Chu HJ, et al. Plasma electrolytic oxidation of titanium and improvement in osseointegration. J Biomed Mater Res B Appl Biomater. 2013;101(6):1023-1030. [39] Echeverry-Rendon M, Galvis O, Quintero Giraldo D, et al. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces. J Mater Sci Mater Med. 2015;26(2):72. [40] Pereira BL, da Luz AR, Lepienski CM, et al. Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes. J Mech Behav Biomed Mater. 2018; 77:347-352. [41] He J, Feng W, Zhao BH, et al. In Vivo Effect of Titanium Implants with Porous Zinc-Containing Coatings Prepared by Plasma Electrolytic Oxidation Method on Osseointegration in Rabbits. Int J Oral Maxillofac Implants. 2018;33(2):298-310. [42] Diefenbeck M, Muckley T, Schrader C, et al. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats. Biomaterials. 2011;32(32):8041-8047. [43] Svalastoga E, Reimann I, Nielsen K. A method for quantitative assessment of bone formation using double labelling with tetracycline and calcein. An experimental study in the navicular bone of the horse. Nord Vet Med. 1983;35(4): 180-183. [44] Li K, Wang C, Yan J, et al. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep. 2018;8(1):1843. [45] Lee JH, Hong KS, Baek HR, et al. In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins. Artif Organs. 2013;37(7):656-662. [46] She C, Shi GL, Xu W, et al. Effect of low-dose X-ray irradiation and Ti particles on the osseointegration of prosthetic. J Orthop Res. 2016;34(10):1688-1696. [47] Kolb A, Reinisch G, Sabeti-Aschraf M, et al. Contamination of surfaces for osseointegration of cementless total hip implants by small aluminium oxide particles: analysis of established implants by use of a new technique. J Orthop Sci. 2013;18(2): 245-249. [48] Araujo MG, Lindhe J. Peri-implant health. J Clin Periodontol. 2018;45 Suppl 20:S230-S236. [49] Klar RM, Duarte R, Dix-Peek T, et al. Calcium ions and osteoclastogenesis initiate the induction of bone formation by coral-derived macroporous constructs. J Cell Mol Med. 2013; 17(11):1444-1457. [50] Klar RM. The Induction of Bone Formation: The Translation Enigma. Front Bioeng Biotechnol. 2018;6:74. [51] Ir'yanov YM, Dyuryagina OV. Effects of a local focus of granulation tissue formed in the bone marrow cavity on reparative osteogenesis. Bull Exp Biol Med. 2014;157(1): 108-111. [52] Ribeiro C, Sencadas V, Areias AC, et al. Surface roughness dependent osteoblast and fibroblast response on poly(L-lactide) films and electrospun membranes. J Biomed Mater Res A. 2015;103(7):2260-2268. [53] Sola-Ruiz MF, Perez-Martinez C, Martin-del-Llano JJ, et al. In vitro preliminary study of osteoblast response to surface roughness of titanium discs and topical application of melatonin. Med Oral Patol Oral Cir Bucal. 2015;20(1):e88-93. [54] Deng Y, Liu X, Xu A, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine. 2015;10:1425-1447. [55] Okada K, Kawao N, Tatsumi K, et al. Roles of plasminogen in the alterations in bone marrow hematopoietic stem cells during bone repair. Bone Rep. 2018;8:195-203. [56] Buenzli PR, Lerebours C, Roschger A, et al. Late stages of mineralization and their signature on the bone mineral density distribution. Connect Tissue Res. 2018;59(sup1):74-80. [57] Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8(11):665-673. [58] Ueda N, Takayama Y, Yokoyama A. Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J Prosthodont Res. 2017;61(3):324-332. [59] Duyck J, Vandamme K. The effect of loading on peri-implant bone: a critical review of the literature. J Oral Rehabil. 2014; 41(10):783-794. [60] Costa ML, Achten J, Griffin J, et al. Effect of Locking Plate Fixation vs Intramedullary Nail Fixation on 6-Month Disability Among Adults With Displaced Fracture of the Distal Tibia: The UK FixDT Randomized Clinical Trial. JAMA. 2017;318(18): 1767-1776. [61] Kane P, Vopat B, Paller D, et al. A biomechanical comparison of locked and unlocked long cephalomedullary nails in a stable intertrochanteric fracture model. J Orthop Trauma. 2014;28(12):715-720. [62] Pekmezci M, McDonald E, Buckley J, et al. Retrograde intramedullary nails with distal screws locked to the nail have higher fatigue strength than locking plates in the treatment of supracondylar femoral fractures: A cadaver-based laboratory investigation. Bone Joint J. 2014;96-B(1):114-121. [63] Klein GR, Levine HB, Hartzband MA. Removal of a well-fixed trabecular metal monoblock tibial component. J Arthroplasty. 2008;23(4):619-622. |