中国组织工程研究 ›› 2011, Vol. 15 ›› Issue (48): 9007-9010.doi: 10.3969/j.issn.1673-8225.2011.48.019
• 数字化骨科 digital orthopedics • 上一篇 下一篇
王 江1,2,徐桂芝1,王 磊1,张惠源2
Wang Jiang1,2, Xu Gui-zhi1, Wang Lei1, Zhang Hui-yuan2
摘要:
背景:由于脑电图信号的非平稳特性,脑-机接口系统至今仍然没有走出实验室,制约脑-机接口实用的主要原因之一是由于被试生理或心理状态的干扰下,脑电特征信号动态变化,难以得到稳定可靠的分类特征。 目的:观察动态提取基于左手、右手和脚3种运动想象时的脑电信号分类特征,提高在线脑-机接口系统分类准确率和反应速度。 方法:共有3位自愿受试者参加了实验,按照屏幕上的提示分别想象左手、右手和脚3种运动,对采集到的脑电图信号,首先通过带通及拉普拉斯滤波,去除眼电等干扰;其次提取改进的多变量自适应自回归模型模型参数作为分类特征;最后与传统的自适应自回归模型和自回归模型方法进行了比较。 结果与结论:结果表明改进的多通道自适应自回归模型算法能够比较稳定的提取出对应左手、右手和脚的分类特征,有利于进一步改进在线脑-机接口数据分析算法的自适应能力,促进脑-机接口系统的实际应用。
中图分类号: