中国组织工程研究 ›› 2011, Vol. 15 ›› Issue (48): 9003-9006.doi: 10.3969/j.issn.1673-8225.2011.48.018
• 数字化骨科 digital orthopedics • 上一篇 下一篇
李丽君,熊冬生,吴效明
Li Li-jun, Xiong Dong-sheng, Wu Xiao-ming
摘要:
背景:脑-机接口是在大脑与外部设备之间建立的直接的交流通路,基于运动想象的脑-机接口研究已经从两类运动想象任务的识别发展到多类任务的识别。 目的:探寻准确有效的对多任务运动想象脑电信号进行特征提取及模式识别的方法。 方法:首先采用公共平均参考法减小多通道中各导联间的相关性,提高脑电信号的信噪比。并对公共空间模式算法进行扩展,采用“一对多”的策略,对4类任务的脑电信号进行特征提取,在模式识别过程中,采用基于决策树法的支持向量机进行分类。对于实验对象样本不充足,结合支持向量机和贝叶斯分类器,将分类结果中具有大概率的测试样本扩充到训练集,最后再次运用支持向量机进行分类。 结果与结论:最佳正确率达到92.78%,“一对多”的公共空间模式和基于决策树的支持向量机可以有效地进行多任务脑电信号识别,扩充样本可以提高分类正确率。
中图分类号: