中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (6): 862-868.doi: 10.3969/j.issn.2095-4344.2442

• 数字化骨科 digital orthopedics • 上一篇    下一篇

假肢接受腔设计及界面应力的有限元分析

王晓辉1,王  坤1,胡志勇1,田红亮2   

  1. 1内蒙古工业大学机械工程学院,内蒙古自治区呼和浩特市  0100002内蒙古荣誉军人肢残康复中心,内蒙古自治区呼和浩特市  010000
  • 收稿日期:2019-05-31 修回日期:2019-06-04 接受日期:2019-07-27 出版日期:2020-02-28 发布日期:2020-01-17
  • 通讯作者: 王坤,硕士,副教授。内蒙古工业大学机械工程学院,内蒙古自治区呼和浩特市 010000
  • 作者简介:王晓辉,男,1993年生,河北省邯郸市人,汉族, 2019年内蒙古工业大学毕业,硕士,主要从事逆向工程和生物力学工程的研究。
  • 基金资助:
    内蒙古自治区高等学校科学技术研究项目(NJZY18080);民政部行业标准项目(MZ2017-T-046);内蒙古自治区科技创新引导项目

Design of the prosthetic socket and the finite element analysis of the interfacial stress

Wang Xiaohui1, Wang Kun1, Hu Zhiyong1, Tian Hongliang2   

  1. 1School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China; 2Inner Mongolia Honorary Military Rehabilitation Center, Hohhot 010000, Inner Mongolia Autonomous Region, China
  • Received:2019-05-31 Revised:2019-06-04 Accepted:2019-07-27 Online:2020-02-28 Published:2020-01-17
  • Contact: Wang Kun, Master, Associate Professor, School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
  • About author:Wang Xiaohui, Master, School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
  • Supported by:
    the Science and Technology Research Project of Inner Mongolia Autonomous Region High Education, No. NJZY18080; the Standard Project Ministry of Civil Affairs Industry, No. MZ2017-T-046; the Science and Technology Innovation Guidance Project of Inner Mongolia Autonomous Region 

摘要:

文题释义:
Mimics 10.0软件:作为专业的三维图像处理软件,能将CT图像转化为残肢的三维模型,计算机生成的三维模型与患者的实际尺寸基本无差别。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟的方法。

背景:残肢-接受腔界面生物力学特性不仅对假肢的适配性有着直接影响,而且也是对接受腔结构进行优化设计的基础。将数字化设计技术与康复工程结合在一起,将有效地提髙假肢接受腔的制作效率和质量。

目的:采用逆正向结合的建模方法,对小腿截肢患者进行定制式的接受腔模型设计,评估残肢与接受腔的界面应力,对接受腔进行迭代设计,优化后的模型采用3D打印制作,以改善传统手工制作接受腔方法。

方法:选择2例内蒙古自治区荣誉军人肢残康复中心的小腿截肢志愿者,根据患者残肢的CT扫描图像,采用Mimics进行图像处理,然后经过Geomagic和UG逆向得到残肢的几何模型。通过使用计算机辅助设计软件Fusion360,根据残肢各个部位的组织结构不同的承受能力作为修型原理对接受腔进行正向建模设计。选用Mooney-Revlin超弹性模型定义软组织的材料特性,对残肢-接受腔界面应力进行有限元分析,并根据结果反馈指导对接受腔进行迭代设计,对再次修型后的接受腔模型进行评估。3D打印制作出接受腔,并进行实验测量。

结果与结论:①对迭代设计后的接受腔与残肢界面的应力进行分析,得到残肢各区域的应力值均低于疼痛阈值,符合设计标准,能较好实现功能传递性和安全舒适性;②此2例患者穿戴3D打印制作的接受腔适配性、稳定性良好,步行对称性相比手工制作接受腔均有显著改善,满足残肢生物力学要求;③试验建立了完整的假肢接受腔的设计、评估及制造系统。

ORCID: 0000-0002-8570-9689(王晓辉)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

关键词: 假肢, 接受腔, 计算机辅助设计, 迭代设计, 有限元分析, 3D打印, 逆向工程, 超弹性, 界面应力, 生物力学

Abstract:

BACKGROUND: Biomechanical properties of the residual limb-socket interface not only have a direct impact on the fit of the prosthesis, but also the basis for optimal design of the socket structure. Combining digital design technology with rehabilitation medical engineering will effectively improve the efficiency and quality of the prosthesis socket.

OBJECTIVE: The reverse-positive combined modeling method was used to design a custom-made socket model for patients with calf amputation to evaluate the interfacial stress between the residual limb and the socket. The socket was iteratively designed. The optimized model was produced by three-dimensional printing to improve traditional hand-made socket methods.

METHODS: Two patients with calf amputation were selected (Volunteers of the Inner Mongolia Honorary Military Rehabilitation Center). According to the CT scan image of the patient’s residual limb, Mimics was used for image processing, and then Geomagic and UG were used to obtain the geometric model of the residual limb. Through the use of the computer-aided design software Fusion360, the socket was forward modeled according to the different tolerances of the tissue structure of the various parts of the residual limb. The Mooney-Revlin superelastic model was used to define the material properties of the soft tissue, and the finite element analysis of the residual limb-socket interface stress was performed. The iterative design of the socket was carried out according to the feedback of the results, and the acceptance socket model after re-modification was evaluated. Three-dimensional printing produced a socket, which received experimental measurements.

RESULTS AND CONCLUSION: (1) The stress of the interface between the socket and the residual limb after iterative design was analyzed, and the stress values of the residual limbs were lower than the pain threshold, which met the design standard and could achieve functional transferability and safety comfort. (2) Two patients wearing three-dimensional printing made the socket adaptability and stability, and the walking symmetry was significantly improved compared with the hand-made socket, meeting the biomechanical requirements of the residual limb. (3) A complete design, evaluation and manufacturing system for the prosthetic lumen was established.

Key words: prosthesis, socket, computer-aided technology, iterative design, finite element analysis, three-dimensional printing, reverse engineering, hyperelasticity, interfacial stress, biomechanics

中图分类号: