中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (11): 1742-1747.doi: 10.3969/j.issn.2095-4344.2017.11.018

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

不同载荷条件下半月板动态仿真生物力学分析

陈文栋1,杨 光2   

  1. 1昆明医科大学第一附属医院麻醉科,云南省昆明市 650032;2常州市第四人民医院骨科,江苏省常州市 213001
  • 修回日期:2016-12-10 出版日期:2017-04-18 发布日期:2017-05-06
  • 通讯作者: 陈文栋,主治医师,昆明医科大学第一附属医院麻醉科,云南省昆明市 650032
  • 作者简介:陈文栋,男,1981年生,云南省剑川县人,白族,2012年昆明医科大学毕业,博士,主治医师,主要从事生物医学系统建模及仿真研究。
  • 基金资助:

    常州市应用基础研究计划项目(CJ20130049)

Biomechanical analysis of dynamic simulation of meniscus under different loading conditions

Chen Wen-dong1, Yang Guang2   

  1. 1Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China; 2Department of Anesthesiology, Changzhou Fourth People’s Hospital, Changzhou 213001, Jiangsu Province, China
  • Revised:2016-12-10 Online:2017-04-18 Published:2017-05-06
  • Contact: Chen Wen-dong, Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
  • About author:Chen Wen-dong, M.D., Attending physician, Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
  • Supported by:

    the Applied Basic Research Program of Changzhou City, No. CJ20130049

摘要:

文章快速阅读:

 
 
文题释义:
半月板:半月板的功能即在于稳定膝关节,传布膝关节负荷力,促进关节内营养,其自身的生物力学呈各向异性及不均一性说明半月板能适应膝关节运动中的各种力学要求。作者应用有限元法仿真模拟并分析不同载荷条件下半月板步态屈曲过程中受力及位移分布情况, 可为临床中半月板的损伤机制的推测提供依据。
动态仿真:一个在不同载荷条件下,接近真实的模拟步态屈曲过程中膝关节半月板相似性能生物力学过程,作者在该过程中获取膝关节屈曲0°,30°,60°,90°时半月板的应力及位移变化指标,揭示不同载荷条件下膝关节屈曲过程中半月板的生物力学变化规律,为进一步研究半月板正常的生物力学功能变化提供参考。
 
摘要
背景:目前临床上半月板的损伤较为常见,其可导致严重的膝关节损伤。目前,关于半月板生物力学的研究已有报道,但不同载荷条件下半月板动态仿真模拟生物力学特性的研究还未见报道。
目的:应用有限元法仿真模拟并分析不同载荷条件下膝关节半月板的生物力学特性。

方法:基于正常成人志愿者膝关节MRI数据建立全膝关节三维有限元模型,通过分别对模型股骨施加300,400及500 N垂直载荷,动态仿真模拟分析步态下膝关节不同屈曲角度时半月板的应力、位移分布及变化情况。

结果与结论:①在分别载荷300,400及500 N条件下,膝关节正常动态屈曲过程中0°,30°,60°,90°时最大应力点均从内侧半月板后角胫骨附着面前缘移动到外侧半月板前角胫骨附着面后缘;最大位移点均从接近内侧半月板内缘中点的地方移动到外侧半月板前外上缘;且外侧半月板应力及位移范围大于内侧半月板,同时应力及位移分布范围与载荷的大小及屈曲角度大小成正比;②结果表明,膝关节半月板三维有限元模型可以有效的动态仿真模拟半月板在不同载荷条件下的受力及位移分布情况,可为临床中半月板损伤机制的推测提供依据。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0002-9388-7653(陈文栋)

关键词: 骨科植入物, 数字化骨科, 载荷, 半月板, 有限元分析, 动态, 生物力学

Abstract:

BACKGROUND: At present, the meniscus injury is very common, and can lead to serious injury of the knee joint. Meniscus biomechanics has been reported, but no studies have concerned the biomechanical characteristics of the meniscus in knee buckling during gait under different loading conditions.

OBJECTIVE: To simulate and analyze the biomechanical characteristics of the knee joint meniscus under different loading conditions using finite element method.
METHODS: Based on the knee magnetic resonance imaging data of normal adult volunteers, three-dimensional finite element model of knee joint was reconstructed. The stress, distribution and changes in the meniscus under different flexion angles were analyzed at 300 N, 400 N and 500 N.
RESULTS AND CONCLUSION: (1) Under the respectively loading conditions of 500 N, 400 N and 300 N, the maximum stress point all from the place of posterior horn of medial meniscus anterior surface of tibia moved to the posterior margin of the anterior tibial attachment of the lateral meniscus, and the maximum displacement all from the place of midpoint of the inner edge of the medial meniscus moved to front outer edge of the lateral meniscus during normal dynamic buckling process of 0°, 30°, 60° and 90°, and the range of stress and displacement of lateral meniscus was greater than that of medial meniscus; simultaneously, the distribution range of stress and displacement was proportional to the size of the loading and the angle of the buckling. (2) The three-dimensional finite element model of the knee joint meniscus can be used to effectively dynamically simulate the distribution of force and displacement under different loading conditions, and can provide evidence for speculation of the mechanism of the injury of the meniscus in clinic. 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Menisci, Tibial, Finite Element Analysis, Biomechanics, Tissue Engineering

中图分类号: