[1] 冯刚.椎间盘退行性变疾病不同临床期生物治疗策略[J].西部医学. 2013;25(8):1121-1127.
[2] 冯刚.椎间盘组织工程研究的挑战与对策[J].西部医学,2010, 22(8):1377-1379.
[3] Sharifi S,Bulstra SK,Grijpma DW,et al.Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J Tissue Eng Regen Med.2014; 3(13):53-67.
[4] Silva-Correia J,Correia SI,Oliveira JM,et al. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv. 2013;31(8): 1514-1531.
[5] Jin L, Shimmer AL,Li X. The challenge and advancement of annulus fibrosus tissue engineering. Eur Spine J. 2013;22(5): 1090-1100.
[6] Gantenbein B, Illien-Junger S, Chan SC, et al.Organ culture bioreactors - platforms to study human intervertebral disc degeneration and regenerative therapy.Curr Stem Cell Res Ther.2015;3(13):1574-1582 .
[7] Wu XL, Wu LJ, Zheng RM, et al. Biomechanical characteristics analysis on discs with coflex fixation on the different segments of lower lumbar spine. Zhongguo Gu Shang. 2014;27(11):938-942.
[8] Blanquer SB, Grijpma DW,Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev.2014;3(12):48-55.
[9] Gebhard H,Bowles R,Dyke J,et al.Total disc replacement using a tissue-engineered intervertebral disc in vivo: New animal model and initial results. Evid Based Spine Care J. 2010;1(2):62-66.
[10] Zhu D, Chen S, Dong X, et al. An observation on the micro-structure and form of annulus fibrosus of lumbar interverbral disc 4, 5. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2007;24(4):842-845.
[11] Ayturk UM, Garcia JJ, Puttlitz CM. The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine.J Biomech Eng.2010;132(6): 1007-1018.
[12] Kular JK, Basu S,Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng.2014;45(5):112-122.
[13] Hosseinkhani M, Mehrabani D, Karimfar MH, et al. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg.2014;3(1):3-7.
[14] Shao X, Hunter CJ. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J Biomed Mater Res A.2007;82(3):701-710.
[15] Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (hanfs) amalgam. Tissue Eng Part A.2008;14(9):1527-1537.
[16] 赵鑫,黄师,严宁,等. 藻酸盐凝胶支架在生物学修复椎间盘退行性变中的应用[J]. 中国组织工程研究与临床康复, 2008,12(1): 73-76.
[17] Guillaume O, Daly A, Lennon K, et al. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: Effect of tgf-beta3 supplementation and oxygen culture conditions. Acta Biomater.2014;10(5):1985-1995.
[18] Chang G, Kim HJ, Vunjak-Novakovic G, et al. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J Biomed Mater Res A. 2010; 92(1): 43-51.
[19] Chang G, Kim HJ, Kaplan D, et al. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J.2007;16(11): 1848-1857.
[20] Park SH, Gil ES, Mandal BB, et al. Annulus fibrosus tissue engineering using lamellar silk scaffolds. J Tissue Eng Regen Med.2012;6(3):24-33.
[21] Bhattacharjee M, Miot S, Gorecka A,et al.Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: Towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8(9):3313-3325.
[22] Blanquer SB, Sharifi S,Grijpma DW.Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering. J Appl Biomater Funct Mater. 2012; 10(3): 177-184.
[23] Attia M, Santerre JP, Kandel RA. The response of annulus fibrosus cell to fibronectin-coated nanofibrous polyurethane-anionic dihydroxyoligomer scaffolds. Biomaterials. 2011;32(2):450-460.
[24] Hegewald AA, Medved F, Feng D, et al.Enhancing tissue repair in annulus fibrosus defects of the intervertebral disc: Analysis of a bio-integrative annulus implant in an in-vivo ovine model.J Tissue Eng Regen Med. 2013;11(15):79-91.
[25] Wismer N, Grad S, Fortunato G, et al.Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: Effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A. 2014; 20(3):672-682.
[26] Wan Y, Feng G, Shen FH, et al. Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration. Macromol Biosci.2007; 7(11): 1217-1224.
[27] 李玉东,徐源,周强,等. 聚乳酸-聚己内酯组织工程纤维环支架的制备及其性能研究[J]. 第三军医大学学报,2014;36(9): 914-918.
[28] Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials.2015;42(11): 11-19.
[29] Wan Y, Feng G, Shen FH, et al. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials.2008;29(6): 643-652.
[30] Park SH, Gil ES, Cho H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A. 2012;18(5-6): 447-458.
[31] Sakai D, Andersson GB.Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat Rev Rheumatol.2015;2(24):243-256.
[32] Rodrigues-Pinto R,Richardson SM,Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J. 2014;23(9):1803-1814.
[33] Gantenbein B,Calandriello E,Wuertz-Kozak K,et al.Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia. BMC Musculoskelet Disord. 2014;15(7):422-429.
[34] Hegewald AA, Cluzel J, Kruger JP, et al.Effects of initial boost with tgf-beta 1 and grade of intervertebral disc degeneration on 3d culture of human annulus fibrosus cells. J Orthop Surg Res.2014; 9(21):73-79.
[35] Chuah YJ, Lee WC, Wong HK, et al.Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study. Exp Cell Res. 2015; 331(1):176-182.
[36] Acosta FL Jr., Metz L, Adkisson HD, et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A.2011; 17(23-24): 3045-3055.
[37] Buhrmann C, Busch F, Shayan P, et al. Sirtuin-1 (sirt1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J Biol Chem. 2014;289(32): 22048-22062.
[38] Shen J, Gao Q, Zhang Y, et al.Autologous plateletrich plasma promotes proliferation and chondrogenic differentiation of adiposederived stem cells. Mol Med Rep. 2015;11(2): 1298-1303.
[39] 冯均伟,王跃,吕波,等. 骨髓间充质干细胞体外诱导成软骨细胞的动态观察[J].中国组织工程研究,2013;17(36):6409-6416.
[40] 张清林,吕惠成,吴一民. 转化生长因子1联合骨形态发生蛋白2诱导骨髓间充质干细胞体外向软骨细胞的分化[J].中国组织工程研究与临床康复,2010,14(24):4371-4375.
[41] Toguchida J. Advancement of regenerative medicine in the locomotive system using ips cells. Clin Calcium.2014;24(4): 587-592.
[42] See EY, Toh SL, Goh JC. Simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell sheets and silk scaffolds for annulus fibrosus regeneration.J Tissue Eng Regen Med.2012;6(7):528-535.
[43] Guzzo RM, Scanlon V, Sanjay A, et al.Establishment of human cell type-specific ips cells with enhanced chondrogenic potential.Stem Cell Rev. 2014;10(6):820-829.
[44] Griffin M, Iqbal SA, Bayat A. Exploring the application of mesenchymal stem cells in bone repair and regeneration.J Bone Joint Surg Br. 2011;93(4):427-434.
[45] Leung VY, Tam V, Chan D, et al. Tissue engineering for intervertebral disk degeneration. Orthop Clin North Am.2011; 42(4): 575-583.
[46] O'Halloran DM, Pandit AS. Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng. 2007; 13(8): 1927-1954.
[47] 胡稷杰,裴国献,全大萍,等. 新型聚乳酸-羟基乙酸(PLGA)支架的细胞相容性研究[J]. 中华创伤骨科杂志. 2005; 7(4): 358-362.
[48] Henry N, Colombier P, Lescaudron L, et al.Regenerative medicine of the intervertebral disc: From pathophysiology to clinical application. Med Sci (Paris). 2014;30(12):1091-1100. |