中国组织工程研究

• 数字化骨科 digital orthopedics • 上一篇    下一篇

胫骨远端关节面缺损有限元模型的生物力学分析

余  华1,李少星2,赵长义3,闫金成1   

  1. 1河北医科大学第三医院骨科,河北省骨科生物力学重点实验室,河北省石家庄市  050051;2河北医科大学第二医院,河北省石家庄市  050000;3河北医科大学解剖教研室,河北省石家庄市  050017
  • 收稿日期:2013-03-05 修回日期:2013-05-27 出版日期:2013-10-22 发布日期:2013-11-02
  • 通讯作者: 闫金成,博士,主任医师,河北医科大学第三医院创伤急救中心,河北省石家庄市 050051 yanjincheng163@163.com
  • 作者简介:余华★,男,1983年生,河南省信阳市人,汉族,2013年河北医科大学毕业,硕士,主要从事创伤骨科方面的研究。 1092230714@qq.com

Finite element model of distal tibial articular surface defect: Biomechanical analysis

Yu Hua1, Li Shao-xing2, Zhao Chang-yi3, Yan Jin-cheng1   

  1. 1Department of Orthopedics, the Third Hospital of Hebei Medical University, Hebei Orthopaedic Biomechanics Laboratory, Shijiangzhuang  050051, Hebei Province, China; 2The Second Hospital of Hebei Medical University, Shijiangzhuang  050000, Hebei Province, China; 3Department of Anatomy, Hebei Medical University, Shijiazhuang  050017, Hebei Province, China
  • Received:2013-03-05 Revised:2013-05-27 Online:2013-10-22 Published:2013-11-02
  • Contact: Yan Jin-cheng, M.D., Chief physician, Department of Orthopedics, the Third Hospital of Hebei Medical University, Hebei Orthopaedic Biomechanics Laboratory, Shijiangzhuang 050051, Heibei Province, China yanjincheng163@163.com
  • About author:Yu Hua★, Master, Department of Orthopedics, the Third Hospital of Hebei Medical University, Hebei Orthopaedic Biomechanics Laboratory, Shijiangzhuang 050051, Heibei Province, China 1092230714@qq.com

摘要:

背景:采用有限元分析法进行骨与关节的生物力学研究得到了广泛应用,但是关于胫骨远端关节面缺损有限元分析,国内外少见关于此类的报道。
目的:建立踝关节的三维有限元模型,制作胫骨远端关节面不同面积的缺损,并模拟在不同位相下胫骨远端关节面发生形变、位移情况,预测胫骨远端关节面缺损的最大允许程度和探讨踝关节创伤性关节炎的力学发病机制。
方法:通过对1名正常成年男性踝关节的多排螺旋 CT扫描,获得连续断层图片,导入Mimics 医学建模软件生成实体模型后,应用大型通用有限元分析软件ANSYS13.0进行网格划分、材料属性赋值生成有限元模型。约束边界条件,模拟踝关节远端轴向受力,得出在不同位相下胫骨远端关节面有限元模型上的应力分布与位移结果。
结果与结论:建立人体踝关节有限元模型总单元数为157 990,总节点数为193 801。3个位相,都是随着胫骨远端缺损面积的增大,接触面积逐渐减小,尤其是跖屈位在缺损直径13 mm的面积时,变化最为明显;3个位相的接触面积,在中立位接触面积最大;在中立位和背屈位都是随着胫骨远端关节面缺损面积的增大,应力峰值逐渐增大,都是在11-13 mm以后应力峰值明显增大;在中立位和背屈10°位,主要集中在后内和后外象限;在跖屈10°位,变化比较复杂,在11-13 mm,随着缺损面积的增大应力峰值变化明显增大,到13 mm应力峰值达到最大值。所以,胫骨远端关节面的最大缺损直径可认为是11-13 mm。胫骨远端关节软骨及骨床缺损直径超过11-13 mm的圆面积,关节功能将受到影响。

关键词: 骨关节植入物, 数字化骨科, 胫骨远端关节面缺损, 有限元分析, 踝关节, 生物力学, Pilon骨折

Abstract:

BACKGROUND: Finite element analysis has been widely used for the research of bone and joint biomechanics, but the reports about finite element analysis of distal tibial articular surface defect are rare at home and abroad.
OBJECTIVE: To establish ankle three-dimensional finite element model, produce distal tibial articular surface defects with different areas, and to simulate the distal tibial articular surface deformation and displacement under the different phases, thus predict the maximum allowable degree of distal tibial articular surface defect and explore the mechanics pathogenesis of ankle traumatic arthritis.
METHODS: Continuous tomographic images were obtained by multi-slice spiral CT scan of a normal adult male ankle, and then the images were imported into the Mimics medicine modeling software to generate a entity model; the large general-purpose finite element analysis software ANSYS 13.0 was used for meshing, material property assignment and generating a finite element model. Restricted boundary conditions and simulated ankle distal end axial force, and then the stress distribution and displacement results of distal tibial articular surface in different phases were obtained. 
RESULTS AND CONCLUSION: The total number of units of the established finite element model of ankle joint was
157 990, and the total number of nodes was 193 801. On three phases, with the increase of the distal tibial defect area, the contact area was gradually decreased, especially in plantar flexion with the defect diameter of 13 mm, the change of the area was most obvious; The contact area of the neutral position was largest; with the increase of the distal tibial defect area in the neutral position and dorsiflexion, the peak stress was increased gradually, and significantly increased after the diameter changed into 11-13 mm; in the neutral position and 10° of dorsiflexion, the peak stress mainly concentrated in the posteromedial and posterolateral quadrant; in 10° of plantar flexion, the change was complex, and when the diameter was 11-13 mm, the peak stress was increased gradually with the increasing of defect area, when the diameter increased to 13 mm, the peak stress reached maximum. The maximum diameter of distal tibial articular surface defect was considered to be 11-13 mm. The joint function will be affected when the diameter of distal tibial articular cartilage and bone bed defects was more than 11-13 mm.

Key words: tibial fractures, ankle joint, finite element analysis, biomechanics, computer-assisted

中图分类号: