中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (23): 6092-6098.doi: 10.12307/2026.344

• 肌肉肌腱韧带组织构建 tissue construction of the muscle, tendon and ligament • 上一篇    下一篇

脑卒中偏瘫患者痉挛程度的影响因素及风险预测模型分析

曹新燕1,冷晓轩1,高世爱1,陈金慧1,刘西花2   

  1. 1山东中医药大学康复医学院,山东省济南市   250355;2山东中医药大学附属医院康复科,山东省济南市   250011

  • 收稿日期:2025-05-06 接受日期:2025-08-14 出版日期:2026-08-18 发布日期:2026-01-05
  • 通讯作者: 刘西花,博士,主任医师,山东中医药大学附属医院康复科,山东省济南市 250011
  • 作者简介:曹新燕,女,2001年生,山西省大同市人,汉族,山东中医药大学在读硕士,主要从事神经与心肺康复领域的临床及科学研究。
  • 基金资助:
    国家自然科学基金项目(81802239),项目负责人:刘西花;山东省中医药科技面上项目(M-2023142),项目负责人:刘西花

Analysis of influencing factors and risk prediction model for spasticity severity in stroke patients with hemiplegia

Cao Xinyan1, Leng Xiaoxuan1, Gao Shiai1, Chen Jinhui1, Liu Xihua2   

  1. 1School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China; 2Department of Rehabilitation, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
  • Received:2025-05-06 Accepted:2025-08-14 Online:2026-08-18 Published:2026-01-05
  • Contact: Liu Xihua, PhD, Chief physician, Department of Rehabilitation, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
  • About author:Cao Xinyan, MS candidate, School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 81802239 (to LXH); Shandong Province Traditional Chinese Medicine Science & Technology Project (General Project), No. M-2023142 (to LXH)

摘要:



文题释义:
脑卒中:是由脑血管破裂出血或脑血管堵塞引起的急性脑血管疾病,具有高致残率、高复发率、高致死率、高发病率等特点。脑卒中患者常见运动、感觉、言语、吞咽、认知等一系列功能障碍,其中运动障碍最为常见。
痉挛性偏瘫:脑卒中后痉挛性瘫痪是脑卒中患者的主要功能障碍之一,主要由于上运动神经元损伤引起的下行抑制减弱,以速度依赖性肌张力增加并伴有腱反射亢进为特征,严重痉挛将会造成肢体肌肉关节挛缩,影响患肢的运动功能恢复,降低患者的生活质量。

背景:痉挛性偏瘫目前仍是临床上亟需解决的难题,目前大部分研究主要讨论痉挛发病的影响因素,而此研究通过二元Logistic回归重点探讨影响脑卒中患者痉挛严重程度的关键因素,为患者个性化治疗方案提供可靠的依据。
目的:通过单因素和多因素Logistic回归分析脑卒中偏瘫患者痉挛程度的影响因素,并构建风险预测模型。
方法:选取2024年11月至2025年3月在山东中医药大学附属医院住院治疗的120例脑卒中后痉挛患者为研究对象,采用自行设计的调查表进行问卷调查,通过Logistic回归分析筛选偏瘫患者痉挛严重程度的影响因素,构建风险预测模型,利用受试者工作特征曲线分析模型的预测效能。
结果与结论:120例脑卒中痉挛患者中轻度痉挛(改良Ashworth分级<2级)患者66例,重度痉挛(改良Ashworth分级≥2级)患者54例。Logistic回归分析结果显示,对于脑卒中痉挛患者,高龄、正常的感觉功能、较高的Barthel指数和Fugl-Meyer运动功能评分是痉挛严重程度的保护因素;而抑郁焦虑的不良情绪、睡眠质量差和疼痛是痉挛严重程度的危险因素。脑卒中偏瘫患者痉挛严重程度的Logistic回归模型受试者工作特征曲线下面积为0.969[95%CI(0.944,0.994)],说明基于这些因素构建的预测模型具有较高的预测效能。临床工作者应该通过多维度、个体化的干预策略,积极预防和减轻痉挛程度,改善患者的功能预后和生活质量。
https://orcid.org/0009-0006-9245-9899 (曹新燕)


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 脑卒中, 偏瘫, 痉挛, 改良Ashworth分级, 影响因素, 模型分析

Abstract: BACKGROUND: Spastic hemiplegia remains a challenging clinical problem that urgently needs to be addressed. Currently, most research primarily focuses on discussing the influencing factors of spasticity onset. This study, however, utilizes binary logistic regression to primarily explore the key factors affecting the severity of spasticity in stroke patients, providing a reliable basis for personalized treatment plans for patients.
OBJECTIVE: To identify the influencing factors of spasticity severity in stroke patients with hemiplegia through univariate and multivariate logistic regression analyses, and to construct a risk prediction model. 
METHODS: A total of 120 patients with post-stroke spasticity hospitalized at the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from November 2024 to March 2025 were enrolled. A self-designed questionnaire was used for data collection. Logistic regression analysis was performed to screen the influencing factors of spasticity severity in hemiplegic patients, and a risk prediction model was constructed. The predictive performance of the model was evaluated via a receiver operating characteristic curve analysis.
RESULTS AND CONCLUSION: Among 120 stroke spasticity patients, 66 had mild spasticity with Modified Ashworth Scale < 2 and 54 had severe spasticity with Modified Ashworth Scale ≥ 2. The results of logistic regression analysis showed that for stroke spasticity patients, advanced age, normal sensory function, higher Barthel index, and Fugl-Meyer motor function score were protective factors for the severity of spasticity; whereas negative emotions of depression and anxiety, poor sleep quality, and pain were risk factors for the severity of spasticity. The area under the receiver operating characteristic curve of the logistic regression model for spasticity severity in post-stroke hemiplegia patients was 0.969 [95% confidence interval (0.944, 0.994)], indicating that the predictive model constructed based on these factors has high predictive performance. Clinicians should actively prevent and reduce spasticity through multidimensional and individualized intervention strategies to improve patients' functional prognosis and quality of life.


Key words: stroke, hemiplegia, spasticity, Modified Ashworth Scale, influencing factors, model analysis

中图分类号: