中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (12): 3075-3082.doi: 10.12307/2026.664
• 组织构建临床实践 clinical practice in tissue construction • 上一篇 下一篇
马善新1,郑建玲2,程 健1,林 禧1,李秋缘1,王 丽1,曾杨康1,宋鲁平3
收稿日期:
2025-04-02
接受日期:
2025-08-06
出版日期:
2026-04-28
发布日期:
2025-09-30
通讯作者:
宋鲁平,女,1964年生,山东省人,汉族,博士,主任医师,深圳市南山区人民医院康复医学科,广东省深圳市 518300
作者简介:
马善新,男,1986年生,广西壮族自治区南宁市人,壮族,硕士,副主任医师,主要从事肌骨超声及脑卒中康复研究。
并列第一作者:郑建玲,中国康复研究中心北京博爱医院物理疗法科,北京市 100068
基金资助:
Ma Shanxin1, Zheng Jianling2, Cheng Jian1, Lin Xi1, Li Qiuyuan1, Wang Li1, Zeng Yangkang1, Song Luping3
Received:
2025-04-02
Accepted:
2025-08-06
Online:
2026-04-28
Published:
2025-09-30
Contact:
Song Luping, PhD, Chief physician, Department of Rehabilitation Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen 518300, Guangdong Province, China
About author:
Zheng Jianling, Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing 100068, China
Ma Shanxin and Zheng Jianling contributed equally to this work.
Supported by:
摘要:
背景:偏瘫是常见的脑卒中相关病症,其运动功能障碍方面的问题相关研究较多,但痉挛方面却研究不足。异常的肌肉张力极大地阻碍了偏瘫患者行走功能的恢复。
目的:探讨脑脑卒中患者早期悬吊保护下佩戴智能助行器(Personal assistant machine,PAM)进行训练,能否提高步行能力,预防肌肉痉挛。
方法:将来自深圳大学总医院及中国康复研究中心的32例早期脑卒中患者随机分配至试验组(n=16)和对照组(n=16)。两组均在悬吊保护下进行为期4周的步态训练,每周5 d,每日30 min。试验组接受了额外的PAM训练。干预前1周内及干预4周后采用Cortex 动作捕捉系统进行三维步态分析、通过Brunnstrom分期、Fugl-Meyer运动功能下肢部分(FMA-LE)评分、Fugl-Meyer平衡功能(FMB)评分和改良Ashworth(MAS)评分进行评估。
结果与结论:经过4周的干预,所有评估指标在组内均发生了显著变化。试验组的MAS评分略有显著增加(P < 0.05,d=|0.15|),而对照组则增加幅度较大(P < 0.05,d=|1.48|)。试验组在步行速度(从16.5 cm/s
提升至38.44 cm/s,P < 0.05,d=|4.01|)、步频(从46.44步/min提升至64.94步/min,
P < 0.05,d=|2.32|)、步长(从15.50 cm提升至29.81 cm,P < 0.05,d=|3.44|)以及患侧屈髋峰值和患侧屈膝峰值(d=|1.82|至|2.17|)方面均有更大幅度的提升。经过4周的治疗,试验组在步行速度(38.44 cm/s vs. 26.63 cm/s,P < 0.05,d=|2.75|)、步长、患侧屈髋峰值和患侧屈膝峰值(d=|1.31|至|1.45|)、步频(64.94步/min vs. 59.38
步/min,P < 0.05,d=|0.85|)以及支撑相减少(双侧:24.31% vs. 28.38%,P < 0.05,d=|0.88|;非患侧:66.19% vs. 70.13%,P < 0.05,d=|0.94|)方面均相较于对照组显著改善。上述结果证实,对于早期偏瘫患者,在悬吊保护下佩戴智能助行器进行步态训练,有助于建立正确的步态模式并预防肌肉痉挛,从而促进运动功能的改善。
https://orcid.org/0000-0001-9248-5833 (Ma Shanxin); https://orcid.org/0009-0001-4704-5164 (Song Luping)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
马善新, 郑建玲, 程 健, 林 禧, 李秋缘, 王 丽, 曾杨康, 宋鲁平. 悬吊保护下佩戴智能助行器主动辅助偏瘫患者行走:随机对照试验[J]. 中国组织工程研究, 2026, 30(12): 3075-3082.
Ma Shanxin, Zheng Jianling, Cheng Jian, Lin Xi, Li Qiuyuan, Wang Li, Zeng Yangkang, Song Luping. Early intelligent active assistance in walking for hemiplegic patients under suspension protection: #br# a randomized controlled trial[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(12): 3075-3082.
[1] FEIGIN VL, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18-23. [2] MALIK AN, TARIQ H, AFRIDI A, et al. Technological advancements in stroke rehabilitation. J Pak Med Assoc. 2022;72(8):1672-1674. [3] MORI H, TAMARI M, MARUYAMA H. Relationship between walking ability of patients with stroke and effect of body weight-supported treadmill training. J Phys Ther Sci. 2020;32(3):206-209. [4] MEHRHOLZ J, T HOMAS S, KUGLER J, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;10(10):CD006185. [5] HSU CY, CHENG YH, LAI CH, et al. Clinical non-superiority of technology-assisted gait training with body weight support in patients with subacute stroke: a meta-analysis. Ann Phys Rehabil Med. 2020;63(6):535-542. [6] GIOYANNINI S, IACOVELLI C, BRAE F, et al. Robotic-assisted rehabilitation for balance and gait in stroke patients (ROAR-S): study protocol for a preliminary randomized controlled trial. Trials. 2022;23(1):872. [7] DE MIGUEL-FERNÁNDEZ J, LOBO-PRAT J, PRINSEN E, et al. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. J Neuroeng Rehabil. 2023;(20):23. [8] NAKAJIMA T, SANKAI Y, TAKATA S, et al. Cybernic treatment with wearable cyborg Hybrid Assistive Limb (HAL) improves ambulatory function in patients with slowly progressive rare neuromuscular diseases: a multicentre, randomised, controlled crossover trial for efficacy and safety (NCY-3001). Orphanet J Rare Dis. 2021;16(1):304. [9] NADOERF F, WRIGHT MA, LOPEZ-MATAS H, et al. User-centered design of a personal-use exoskeleton: a clinical investigation on the feasibility and usability of the ABLE exoskeleton device for individuals with spinal cord injury to perform skills for home and community environments. Front Neurosci. 2024;18:1437358. [10] BATTAGLIA M, BORG MB, LORO A, et al. post-stroke spasticity: follow-up and functional implications of chronic long-term treatment with botulinum toxin. Eur J Phys Rehabil Med. 2024;60(4):581-590. [11] BAYLE N, MAISONOBE P, RAYMOND R, et al. Composite active range of motion (CXA) and relationship with active function in upper and lower limb spastic paresis. Clin Rehabil. 2020;34(6):803-811. [12] CHERNI Y, HAJIZADEH M, DAL MASO F, et al. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking. Eur J Appl Physiol. 2021;121(11):2967-2980. [13] Förster A, Gass A, Kern R, et al. Brain imaging in patients with transient ischemic attack: a comparison of computed tomography and magnetic resonance imaging. Eur Neurol. 2012;67(3):136-141. [14] RIZVI MR, SHARNMA A, MALKI A, et al. Enhancing cardiovascular health and functional recovery in stroke survivors: a randomized controlled trial of stroke-specific and cardiac rehabilitation protocols for optimized rehabilitation. J Clin Med. 2023;12(20):6589. [15] LI L, LIU R, HE J, et al. Effects of threshold respiratory muscle training on respiratory muscle strength, pulmonary function and exercise endurance after stroke: a meta-analysis. J Stroke Cerebrovasc Dis. 2024:33(8):107837. [16] SCHRODER J, TRUIJERN S, VANRIEKNGE T, et al. Feasibility and effectiveness of repetitive gait training early after stroke: a systematic review and meta-analysis. J Rehabil Med. 2019;51(2):78-88. [17] LIANG S, HONG ZQ, CAI Q, et al. Effects of robot-assisted gait training on motor performance of lower limb in poststroke survivors: a systematic review with meta-analysis. Eur Rev Med Pharmacol Sci. 2024;28(3):879-898. [18] JOHNSTON TE, KELLER S, DENZER-WEILER C, et al. A clinical practice guideline for the use of ankle-foot orthoses and functional electrical stimulation post-stroke. J Neurol Phys Ther. 2021;45:112-196. [19] LEE Y, KIM GB, SHIN S. Association between lower limb strength asymmetry and gait asymmetry: implications for gait variability in stroke survivors. J Clin Med. 2025;14(2):380. [20] SEO JW, KANG GH, KIM CH, et al. Characteristics of gait event and muscle activation parameters of the lower limb on the affected side in patients with hemiplegia after stroke: a pilot study. Arch Rehabil Res Clin Transl. 2023;5(4): 100274. [21] SENDA J, ITO K, KOTAKE T, et al. Investigation of inpatient convalescent rehabilitation outcomes in branch atheromatous disease. J Stroke Cerebrovasc Dis. 2023;32(3):106937. [22] ZHIYAN H, NIN L, BAOYUN C, et al. Rehabilitation nursing for cerebral stroke patients within a suitable recovery empty period. Iran J Public Health. 2017; 46(2):180-185. [23] MAO HF, HSUEH IP, Tang PF, et al. Analysis and comparison of the psychometric properties of three balance measures for stroke patients. Stroke. 2002;33(4):1022-1027. [24] HERNAN ED, FORERO SM, GALEANO CP, et al. Intra and inter-rater reliability of Fugl-Meyer assessment of lower extremity early after stroke. Braz J Phys Ther. 2021;25(6):709-718. [25] BOHANNON RW, SMITH MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-207. [26] PISCITELLI D, PELLICCIARI L, VIDMAR T, et al. Is it time to go beyond the modified ashworth scale? Letter to the editor on “reliability of the modified Ashworth scale after stroke for 13 muscle groups”. Arch Phys Med Rehabil. 2023;104(10): 1735-1736. [27] VIDMAR T, GOLJAR KN, PUH U. Reliability of the modified ashworth scale after stroke for 13 muscle groups. Arch Phys Med Rehabil. 2023; 104(10):1606-1611. [28] GILLESPIE J, ARNOLD D, TRAMMELL M, et al. Utilization of overground exoskeleton gait training during inpatient rehabilitation: a descriptive analysis. J Neuroeng Rehabil. 2023;20(1):102. [29] BATTERHAM AM, HOPKINS WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50-57. [30] SKVORTSOV DV, KAURKIN SN, IVANOVA GE. Targeted biofeedback training to improve gait parameters in subacute stroke patients: a single-blind randomized controlled trial. Sensors (Basel). 2024;24(22):7212. [31] MAZZUCCHELLI M, MAZZOLENI D, CAMPANINI I, et al. Evidence-based improvement of gait in post-stroke patients following robot-assisted training: a systematic review. NeuroRehabilitation. 2022;51(4):595-608. [32] HUBER J, ELWERTl N, POWELL ES, et al. Effects of dynamic body weight support on functional independence measures in acute ischemic stroke: a retrospective cohort study. J Neuroeng Rehabil. 2023;20(1):6. [33] MEYER A, H RDLICKA HC, CUTLER E, et al. A novel body weight-supported postural perturbation module for gait and balance rehabilitation after stroke: preliminary evaluation study. JMIR Rehabil Assist Technol. 2022; 9(1):e31504. [34] NAGHDI S, A NSARI NN, RASTGOO M, et al. A pilot study on the effects of low frequency repetitive transcranial magnetic stimulation on lower extremity spasticity and motor neuron excitability in patients after stroke. J Bodyw Mov Ther. 2015;19(4):616-623. [35] CHEN S, Z HANGh W, WANG D, et al. How robot-assisted gait training affects gait ability, balance and kinematic parameters after stroke: a systematic review and meta-analysis. Eur J Phys Rehabil Med. 2024;60(3):400-411. [36] XU P, HUANG Y, WANG J, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for stroke with spasticity: a systematic review and meta-analysis. J Neurol. 2021;268(11):4013-4022. [37] KOLDAS D OGAN Ş. Robot-assisted gait training in stroke. Turk J Phys Med Rehabil. 2024;70(3):293-299. [38] MA ZZ, WU JJ, HUA XY, et al. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol. 2023;14: 1135466. [39] DELUCA C, MORETTO G, DI MATTEO A, et al. Hemi-and monoataxia in cerebellar hemispheres and peduncles stroke lesions: topographical correlations. Cerebellum. 2012;11(4):917-924. [40] KAYABINAR B, ALEMDAROGLU-GURBUZ İ, YILMAZ Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Eur J Phys Rehabil Med. 2021;57(2):227-237. [41] DATTOLA R, GIRLANDA P, VITA G, et al. Muscle rearrangement in patients with hemiparesis after stroke: an electrophysiological and morphological study. Eur Neurol. 1993;33(2):109-114. [42] HERING GO, BERTSCHINGER R, STEOPAN J. A quadriceps femoris motor pattern for efficient cycling. PLoS One. 2023;18(3):e0282391. [43] WLODARCZYK L, CICHON N, SALUK-BIJAK J, et al. Neuroimaging techniques as potential tools for assessment of angiogenesis and neuroplasticity processes after stroke and their clinical implications for rehabilitation and stroke recovery prognosis. J Clin Med. 2022;11(9):2473. [44] RUFF J, UDEH B, LINDER S. Cardiac rehabilitation for persons with stroke: a cost-effectiveness analysis. Clin Rehabil. 2025;39(2):153-160. |
[1] | 王 峥, 程 吉, 于金龙, 刘文红, 王召红, 周鲁星. 水凝胶材料在脑卒中治疗中的应用进展与未来展望[J]. 中国组织工程研究, 2026, 30(8): 2081-2090. |
[2] | 高 峰, 张 俊, 余文君, 单于玉婧, 赵 乐, 胡雨婷, 王俊华, 刘永富. 佩戴腕手矫形器对脑卒中患者手功能障碍作用的Meta分析[J]. 中国组织工程研究, 2026, 30(8): 2124-2131. |
[3] | 陶代菊, 苏海玉, 王宇琪, 沈志强, 何 波. 高/低表达miR-122-5p稳转PC12细胞株的构建和鉴定[J]. 中国组织工程研究, 2026, 30(7): 1790-1799. |
[4] | 周 坚, 张 涛, 周威力, 赵星丞, 王 军, 沈 杰, 钱 丽, 陆 明. 抗阻训练对骨质疏松并肌少症患者股四头肌质量及膝关节功能的影响[J]. 中国组织工程研究, 2026, 30(5): 1081-1088. |
[5] | 杨媛媛, 周珊珊, 成小菲, 冯露叶, 汤继芹. 非侵入性脑刺激治疗脑卒中后下肢运动功能障碍的网状Meta分析[J]. 中国组织工程研究, 2026, 30(4): 1008-1018. |
[6] | 侯 兵, 赵鸿斐, 车鹏程, 王梓祎, 高 赞, 陈琳渝, 王金芝, 窦 娜. 经颅直流电刺激即刻和3周后上肢运动功能及脑功能分析[J]. 中国组织工程研究, 2026, 30(12): 3066-3074. |
[7] | 程 乐, 朱才丰, 周冰原, 高大红, 崔晓雅, 李 静, 王雪伟, 杨高尚, 陈希阳. 靶向炎症细胞因子治疗脑卒中的机制:开放全基因组关联研究大数据分析[J]. 中国组织工程研究, 2026, 30(12): 3198-3216. |
[8] | 高世爱, 陈金慧, 曹新燕, 冷晓轩, 刘西花. 腹部电刺激与核心稳定训练改善脑卒中假性延髓麻痹患者平衡及咳嗽能力[J]. 中国组织工程研究, 2026, 30(11): 2736-2744. |
[9] | 张月婷, 李静林, 傅振燚, 晏 斐, 高 宇, 刘佳鑫. 内质网应激促进铁死亡加重脑缺血再灌注损伤[J]. 中国组织工程研究, 2026, 30(11): 2806-2813. |
[10] | 王德刚, 陈国华, 梅俊华, 王俊力, 郑 丽. 夜间睡眠时长对中老年慢性病共病人群新发心脑血管疾病的影响[J]. 中国组织工程研究, 2026, 30(11): 2814-2822. |
[11] | 周欣滢, 孙新月, 朱文浩. 胰岛素样生长因子与缺血性脑卒中:基于欧洲人群全基因组的关联分析[J]. 中国组织工程研究, 2026, 30(11): 2909-2919. |
[12] | 胡 鑫, 万海丽, 杜 亮, 李永杰, 夏 渊. Theta刺激治疗脑卒中患者下肢运动功能和日常活动能力的Meta分析[J]. 中国组织工程研究, 2026, 30(10): 2576-2583. |
[13] | 田 梦, 娄天伟, 张永臣, 贾红玲. 组织蛋白酶F有潜力成为脑卒中风险预测血清生物标记物:GWAS数据库数据分析[J]. 中国组织工程研究, 2026, 30(10): 2662-2670. |
[14] | 王 峥, 程 吉, 于金龙, 刘文红, 王召红, 周鲁星. 水凝胶材料在脑卒中治疗中的应用进展与未来展望[J]. 中国组织工程研究, 2025, 29(在线): 1-10. |
[15] | 王 咪, 马书杰, 刘 杨, 齐 瑞. 缺血性脑卒中铁死亡特征基因NFE2L2的鉴定与验证[J]. 中国组织工程研究, 2025, 29(7): 1466-1474. |
The intervention employed two devices: (1) the PAM is an intelligent powered wearable lower limb walking assistive device developed by Gulin Electric Appliance (Shenzhen) Co., Ltd., with the product model PAM-01 (Figure 1). During the walking training process, the integrated APP intelligent motion sensor detects the angular velocity of hip flexion and provides external auxiliary power to assist the hip joint, thereby facilitating forward walking. The level of assistance and the movement mode can be customized according to the severity of hemiplegia. The device offers three adjustable assistance modes (stage IV–3.0 kgf, stage III–4.0 kgf, and stage II–5.0 kgf), while the assistance for the unaffected limb can be set to 0 kgf. (2) The SPS (model: XY-K-G3, manufactured by Xiangyu Medical Co. Guangzhou), as depicted in Figure 2, consists of a bracket, a lifting column, and a weight-bearing sling. This system is designed solely to provide protection and does not incorporate a weight reduction function. It is equipped with casters to facilitate mobility and support walking training on the ground.
Reflective markers were positioned on anatomical bony landmarks, and participants walked a 5-meter straight path at their self-selected normal speed for 2–3 trials (Figure 3). Based on prior research and clinical expertise, key parameters for evaluating intervention efficacy were identified: (1) temporospatial parameters (velocity, step frequency, step length, and stance phase) and (2) kinematic parameters (peak hip and knee flexion angles). Therapists extracted valid gait data that met predefined criteria for further analysis [28].
偏瘫是常见的与脑脑卒中相关的病症,其运动功能障碍方面的问题常被研究,但痉挛方面却研究不足。异常的肌肉张力极大地阻碍了偏瘫患者行走功能的恢复。#br# 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程#br#
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||