中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (11): 2681-2690.doi: 10.12307/2026.112

• 骨组织构建 bone tissue construction •    下一篇

3D培养血管基质成分自组装复杂结构血管化成骨类器官

吴佳洲1,2,钱  陶2,刘泽贤2,武艳斌2,何  莹2,李亚洲2,彭  江1,2   

  1. 1贵州医科大学附属医院骨科,贵州省贵阳市   550004;2中国人民解放军总医院第四医学中心骨科医学部研究所,北京市   100853


  • 收稿日期:2025-02-06 接受日期:2025-06-09 出版日期:2026-04-18 发布日期:2025-09-02
  • 通讯作者: 彭江,博士,教授,主任医师,贵州医科大学附属医院骨科,贵州省贵阳市 550004;中国人民解放军总医院第四医学中心骨科医学部研究所,北京市 100853
  • 作者简介:吴佳洲,男,1998年生,浙江省绍兴市人,汉族,贵州医科大学在读硕士,主要从事类器官和组织工程领域的研究。
  • 基金资助:
    国家重点研发计划课题项目(2024YFA1108605),项目负责人:彭江

Three-dimensional culture of stromal vascular fraction self-assembles into complex vascularized osteogenic organoids

Wu Jiazhou1, 2, Qian Tao2, Liu Zexian2, Wu Yanbin2, He Ying2, Li Yazhou2, Peng Jiang1, 2   

  1. 1Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 2Institute of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2025-02-06 Accepted:2025-06-09 Online:2026-04-18 Published:2025-09-02
  • Contact: Peng Jiang, MD, Professor, Chief physician, Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Institute of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • About author:Wu Jiazhou, MS candidate, Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Institute of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • Supported by:
    National Key Research and Development Program of China, No. 2024YFA1108605 (to PJ)

摘要:


文题释义:
血管基质成分:从脂肪组织中提取的细胞复合体,包括脂肪来源干细胞、内皮细胞等多种细胞类型,用于再生医学和组织工程,促进组织修复和再生。
类器官:由干细胞或前体细胞在体外特定条件下自组织形成的微型三维组织结构,能够模拟真实器官的结构和功能,被广泛应用于疾病建模、药物筛选和生物医学研究。

背景:相较于2D培养技术,3D培养技术能够更准确地模拟细胞自然生长的体内环境,成为基础科学研究和转化医学领域的关键焦点。
目的:通过3D培养技术构建预血管化的成骨类器官。
方法:从同一人体脂肪组织中分别分离提取血管基质成分、脂肪间充质干细胞,通过流式细胞学鉴定细胞组分。将血管基质成分、脂肪间充质干细胞分别接种于96孔U型板内,培养3 d后血管基质成分自组装成型、脂肪间充质干细胞成球,培养第14天,通过苏木精-伊红染色与细胞骨架染色观察球体内部结构和细胞形态;培养0,7,14,21 d,Presto Blue实验检测细胞活性;培养3 d后分别进行成骨、成软骨与成脂诱导分化,诱导14 d后,茜素红染色观察成骨分化,阿利新蓝染色观察成软骨分化,油红O染色观察成脂分化,免疫荧光染色共定位成骨诱导后CD31(内皮细胞标志物)、RUNX2(早期成骨标志物)、CD44(间充质干细胞标志物)、Ⅰ型胶原(晚期成骨标志物)、过氧化物酶体增殖物激活受体γ(成脂标志物)的表达,qRT-PCR检测成骨诱导后RUNX2、骨桥蛋白、Ⅰ型胶原、Sp7转录因子、CD31和血管内皮生长因子mRNA表达。
结果与结论:①流式细胞分析表明,血管基质成分包含脂肪间充质干细胞和内皮细胞等多种细胞类型,脂肪间充质干细胞球主要由脂肪间充质干细胞构成;②苏木精-伊红染色及细胞骨架染色显示,相对于脂肪间充质干细胞球,血管基质成分类器官结构更贴近天然组织,细胞排列有序,细胞外基质更丰富;细胞活性测试显示,脂肪间充质干细胞球培养7 d的细胞活性高于血管基质成分类器官(P < 0.05),培养21 d的细胞活性低于血管基质成分类器官(P < 0.05),说明血管基质成分类器官的细胞活性持续时间更长;③相较于脂肪间充质干细胞球,血管基质成分类器官具有更优的骨、软骨和脂肪形成能力;多色免疫荧光共定位显示,血管基质成分类器官中血管网络和成骨标志物表达丰富,细胞间和细胞-基质相互作用复杂,脂肪间充质干细胞球结构单一且缺乏内皮细胞基因表达;qRT-PCR检测结果显示,血管基质成分类器官中RUNX2、骨桥蛋白、Ⅰ型胶原、Sp7转录因子、CD31和血管内皮生长因子mRNA表达均高于脂肪间充质干细胞球(P < 0.05);④结果表明,血管基质成分类器官具备复杂的生理结构和更强的血管形成和骨形成能力,以及更持久的细胞活性。
https://orcid.org/0009-0003-1793-9639(吴佳洲) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 三维培养, 血管基质成分, 脂肪间充质干细胞, 内皮细胞, 类器官, 成骨分化, 血管生成, 工程化材料

Abstract: BACKGROUND: Compared with two-dimensional culture techniques, three-dimensional culture technology can more accurately simulate the in vivo environment of natural cell growth, which becomes a key focus in the fields of basic scientific research and translational medicine.
OBJECTIVE: To construct prevascularized osteogenic organoids through three-dimensional culturing techniques.
METHODS: Stromal vascular fraction (SVF) and adipose mesenchymal stem cells were isolated and extracted from the same human adipose tissue, and the cell components were identified by flow cytometry. The SVF and adipose mesenchymal stem cells were inoculated into 96-well U-plates. After 3 days of culture, the SVF was self-assembled and the adipose mesenchymal stem cells were formed into spheres. On the 14th day of culture, the internal structure of the spheres and cell morphology were observed by hematoxylin-eosin staining and cytoskeletal staining. Viability of the cells was detected by Presto Blue assay on days 0, 7, 14, and 21 of culture. Osteogenic, chondrogenic, and lipogenic differentiation were induced after 3 days of culture. After 14 days of induction, alizarin red staining was used to observe osteogenic differentiation; alizarin blue staining to observe chondrogenic differentiation; oil red O staining to observe lipogenic differentiation; immunofluorescence staining to co-localize CD31 (endothelial cell marker), RUNX2 (early osteogenic marker), CD44 (mesenchymal stem cell marker), type I collagen (late-stage osteogenic marker), and peroxisome proliferator-activated receptor γ (lipogenic markers); and qRT-PCR to detect the mRNA expression of RUNX2, osteopontin, type I collagen, Sp7 transcription factor, CD31, and vascular endothelial growth factor.
RESULTS AND CONCLUSION: (1) Flow cytometry results revealed that the SVF contained various cell types including adipose mesenchymal stem cells and endothelial cells, whereas adipose mesenchymal stem cell spheroids were primarily composed of adipose mesenchymal stem cells. (2) Hematoxylin-eosin staining with cytoskeleton staining indicated that compared with adipose mesenchymal stem cell spheroids, SVF organoids more closely mimicked natural tissue structures with orderly arranged cells and richer extracellular matrix. Cell viability tests showed that adipose mesenchymal stem cell spheroids had higher activity on day 7, but SVF organoids surpassed the cells by day 21 (P < 0.05), exhibiting longer-lasting cell viability. (3) In tri-lineage differentiation experiments, SVF organoids demonstrated superior osteogenic and chondrogenic potential compared with adipose mesenchymal stem cell spheroids. Multicolor immunofluorescence colocalization revealed rich vascular networks and pronounced osteogenic marker expression in SVF organoids, with complex cell-to-cell and cell-to-matrix interactions, whereas adipose mesenchymal stem cell spheroids showed a simpler structure with a lack of endothelial gene expression. qRT-PCR results indicated significantly higher expression of RUNX2, osteopontin, type I collagen, Sp7 transcription factor, CD31, and vascular endothelial growth factor in SVF organoids compared with adipose mesenchymal stem cell spheroids (P < 0.05). Overall, the findings suggest that SVF organoids possess complex physiological structures with enhanced capabilities in vascular and bone formation, as well as sustained cell viability.


Key words: three-dimensional culture, stromal vascular fraction, adipose mesenchymal stem cells, endothelial cells, organoids, osteogenic differentiation, angiogenesis, engineered materials

中图分类号: