中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (14): 3485-3493.doi: 10.12307/2025.581

• 组织工程骨材料 tissue-engineered bone •    下一篇

基于回归分析的生物可降解锌合金接骨板结构设计和有限元分析

张天蔚1,2,韩兴元1,张佃明1,李荣华1,赵德伟1,2    

  1. 1大连交通大学机械工程学院,辽宁省大连市   116028;2大连大学附属中山医院骨科植入材料开发国家地方联合工程实验室,辽宁省大连市   116200
  • 收稿日期:2024-10-31 接受日期:2025-02-17 出版日期:2026-05-18 发布日期:2025-09-05
  • 通讯作者: 通讯作者:赵德伟,博士,教授,大连交通大学机械工程学院,辽宁省大连市 116028;大连大学附属中山医院骨科植入材料开发国家地方联合工程实验室,辽宁省大连市 116200
  • 作者简介:张天蔚,男,1987年生,黑龙江省哈尔滨市人,汉族,博士,主治医师,主要从事关节外科的基础和临床工作,目前主要从事生物材料在骨科中的应用研究。
  • 基金资助:
    国家骨科与运动康复临床医学研究中心创新基金项目(2021-NCRC-CXJJ-ZH-28),项目负责人:赵德伟

Structural design and finite element analysis of biodegradable zinc alloy bone plate based on regression analysis

Zhang Tianwei1, 2, Han Xingyuan1, Zhang Dianming1, Li Ronghua1, Zhao Dewei1, 2 #br#   

  1. 1College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China; 2National and Local Joint Engineering Laboratory for Orthopedical Implants, Dalian 116200, Liaoning Province, China
  • Received:2024-10-31 Accepted:2025-02-17 Online:2026-05-18 Published:2025-09-05
  • Contact: Zhao Dewei, PhD, Professor, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China; National and Local Joint Engineering Laboratory for Orthopedical Implants, Dalian 116200, Liaoning Province, China
  • About author:Zhang Tianwei, PhD, Attending physician, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China; National and Local Joint Engineering Laboratory for Orthopedical Implants, Dalian 116200, Liaoning Province, China
  • Supported by:
    biodegradable zinc-magnesium alloy; titanium alloy; fracture internal fixation system; regression analysis; finite element analysis; engineered orthopedic material

摘要:

文题释义:
随机森林:是一种基于集成学习的非参数回归方法,通过构建多棵决策树并结合其预测结果,来捕捉输入变量和输出变量之间的复杂非线性关系。每棵树都是通过随机抽取的样本和特征构建的,模型通过多次随机采样与组合,避免了单一模型的过拟合现象。随机森林在应对高维度、非线性以及噪声数据时表现出色,被广泛应用于医疗器械设计、工程应用和经济预测等多个领域,能够有效预测复杂系统中的关键参数并优化设计。
应力遮蔽效应:是指当两种或者多种具有不同刚度的材料共同承载外力时,具有刚度较高的材料将会承担较多的载荷,而刚度较低的材料只承载较低的载荷。

背景:近年来,生物可降解锌合金接骨板可有效解决钛合金接骨板应力屏蔽效应大、需手术二次取出等临床问题而受到广泛研究。影响接骨板应力遮蔽效应的主要因素包括接骨板的结构设计、材料选择和降解速度等,然而有关生物可降解锌合金接骨板结构设计与应力遮蔽效应关系的研究较少,并且缺乏科学依据。
目的:探索生物可降解锌合金接骨板结构设计与应力遮蔽效应的关系。
方法:使用普通锌镁合金接骨板固定新西兰兔胫骨骨折,术后3,6,9,12个月取出接骨板,分析材料降解率。设计关于接骨板厚度、螺钉孔径、开弧直径和开孔直径等4个参数与接骨板应力的正交实验,基于构建的数据集,采用回归分析建立4种参数与锌镁合金接骨板应力的预测模型,根据不同约束条件得到接骨板设计的最优参数。采用有限元分析对比优化设计前后的锌镁合金接骨板与钛合金接骨板在兔胫骨骨折模型中的生物力学性能。
结果与结论:①植入兔体内后,锌镁合金接骨板表面有明显腐蚀现象,并且随着时间推移腐蚀程度逐渐加深;与植入前相比,锌镁合金接骨板植入后3,6,9,12个月的降解率分别为11.5%,17.9%,21.8%和24.5%。②通过回归模型得出接骨板理论最优结构参数:接骨板厚度1.1 mm,螺钉孔径2.4 mm,开孔直径0.6 mm,开弧直径6.0 mm。③有限元分析结果显示,优化前和优化后的锌镁合金接骨板、钛合金接骨板在复合工况下所受的最大应力均小于其屈服强度,初始固定时,优化前、优化后钛合金接骨板组骨折段端位移分别为0.08 mm和0.12 mm,优化前、优化后锌镁合金接骨板组骨折段端位移分别为0.10 mm和0.13 mm;降解3个月后,优化前、优化后锌镁合金接骨板组骨折段端位移分别为和0.11 mm和0.15 mm,两种接骨板治疗兔胫骨骨折理论上均是安全的。与钛合金接骨板相比,锌镁合金接骨板表现出较低的应力遮蔽效应;随着降解,优化前、优化后锌镁合金接骨板组应力遮挡率分别下降了27.56%和27.66%。结果表明,锌镁合金接骨板在早期阶段提供力学支撑,在后期随着材料降解降低应力遮挡效应,从而有利于骨愈合。
https://orcid.org/0009-0003-4710-2610 (张天蔚) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 生物可降解锌镁合金">, 钛合金">, 骨折内固定系统">, 回归分析">, 有限元分析">, 工程化骨科材料

Abstract: BACKGROUND: In recent years, biodegradable zinc alloy bone plates could effectively solve the clinical problems such as stress shielding effect and secondary surgical removal. The main factors that affect the stress shielding of biodegradable bone plates include the structural design, material selection, and degradation rate. However, the relationship between the structural design and stress shielding effect of biodegradable zinc alloy bone plates is rarely studied, and there is a lack of scientific basis.
OBJECTIVE: To explore the relationship between the structural design of biodegradable zinc alloy plates and the stress shielding effect.
METHODS: Ordinary zinc-magnesium alloy plates were used to fix tibial fractures in New Zealand rabbits. The plates were removed 3, 6, 9, and 12 months after surgery, and the material degradation rate was analyzed. An orthogonal experiment was designed to compare the four parameters of plate thickness, screw hole diameter, arc diameter, and hole diameter with plate stress. Based on the constructed data set, a prediction model of the four parameters and zinc-magnesium alloy plate stress was established by regression analysis. The optimal parameters of plate design were obtained according to different constraints. Finite element analysis was used to compare the biomechanical properties of zinc-magnesium alloy plates and titanium alloy plates before and after optimization design in a rabbit tibial fracture model.
RESULTS AND CONCLUSION: (1) After implantation in rabbits, the surface of the zinc-magnesium alloy plate showed obvious corrosion, and the degree of corrosion gradually deepened over time. Compared with before implantation, the degradation rates of the zinc-magnesium alloy plate were 11.5%, 17.9%, 21.8%, and 24.5% at 3, 6, 9, and 12 months after implantation, respectively. (2) The optimal theoretical structural parameters of the plate were obtained by regression model: plate thickness 1.1 mm, screw hole diameter 2.4 mm, hole diameter 0.6 mm, arc diameter 6.0 mm. (3) The results of finite element analysis showed that the maximum stresses of the zinc-magnesium alloy plate and titanium alloy plate before and after optimization were less than their yield strength under the composite working conditions. During the initial fixation, the displacement of the fracture end of the titanium alloy plate group before and after optimization was 0.08 mm and 0.12 mm, respectively. The displacement of the fracture end of the zinc-magnesium alloy plate group before and after optimization was 0.10 mm and 0.13 mm, respectively. After 3 months of degradation, the displacement of the fracture end of the zinc-magnesium alloy plate group before and after optimization was 0.11 mm and 0.15 mm, respectively. Both plates were theoretically safe for the treatment of rabbit tibial fractures. Compared with the titanium alloy plate, the zinc-magnesium alloy plate exhibited a lower stress shielding effect. With degradation, the stress shielding rates of the zinc-magnesium alloy plate group before and after optimization decreased by 27.56% and 27.66%, respectively. The results exhibit that the zinc-magnesium alloy plate provides mechanical support in the early stage, and reduces the stress shielding effect in the later stage as the material degraded, which is beneficial to bone healing.

Key words: biodegradable zinc-magnesium alloy">, titanium alloy">, fracture internal fixation system">, regression analysis">, finite element analysis">, engineered orthopedic material

中图分类号: