中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (3): 510-516.doi: 10.12307/2025.122

• 人工假体 artificial prosthesis • 上一篇    下一篇

非对称型假体设计及全膝关节置换后的力学分析

苏德君1,董万鹏1,董跃福2,张吉超1,张  震1   

  1. 1上海工程技术大学材料科学与工程学院,上海市   201620;2徐州医科大学附属连云港医院,江苏省连云港市   222061
  • 收稿日期:2023-11-15 接受日期:2024-01-20 出版日期:2025-01-28 发布日期:2024-06-03
  • 通讯作者: 董万鹏,博士,副教授,上海工程技术大学材料科学与工程学院,上海市 201620
  • 作者简介:苏德君,男,1999 年生,内蒙古自治区呼伦贝尔市人,汉族,上海工程技术大学在读硕士,主要从事膝关节假体相关研究。
  • 基金资助:
    国家自然科学基金项目 (31670956),项目负责人:董跃福

Design of asymmetric prosthesis and mechanical analysis of total knee arthroplasty

Su Dejun1, Dong Wanpeng1, Dong Yuefu2, Zhang Jichao1, Zhang Zhen1   

  1. 1School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; 2Lianyungang Hospital, Xuzhou Medical University, Lianyungang 222061, Jiangsu Province, China
  • Received:2023-11-15 Accepted:2024-01-20 Online:2025-01-28 Published:2024-06-03
  • Contact: Dong Wanpeng, PhD, Associate professor, School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • About author:Su Dejun, Master candidate, School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Supported by:
    National Natural Science Foundation of China, No. 31670956 (to DYF)

摘要:

文题释义

膝关节内外侧间室:膝关节共有3个间室,即内侧胫股间室、外侧胫股间室、髌股间室。内侧间室受后交叉韧带和内侧副韧带限制,稳定性较高;外侧间室受韧带束缚较小,活动性较强。间室的存在形成了膝关节以内侧髁为轴进行外旋的活动机制。
人工膝关节假体:当膝关节受损或存在严重病变时,进行全膝关节置换将病变组织替换成人工膝关节假体能够减缓患者疼痛,恢复膝关节功能性。膝关节假体由金属材料的股骨假体、胫骨假体以及高分子衬垫组成,具有一定的使用寿命。

摘要
背景:全膝关节置换是治疗膝关节晚期病症的有效手段,但假体衬垫容易因内部应力变化而产生磨损失效,寿命有限且术后患者的活动能力降低。如何对假体进行改进设计来满足患者更多的需求是假体研究的重要方向。
目的:基于半月板的形态设计一种非对称型假体,并与对称设计的后稳定型假体进行比较,分析2种假体的应力分布情况和衬垫的接触面积变化,以探究非对称型假体设计是否存在优势。
方法:通过有限元方法对1例膝骨关节炎患者进行模拟截骨和假体装配,建立基于非对称型假体及对称设计的后稳定型假体的全膝关节置换术后膝关节模型。在0°,10°,20°,30°的屈膝条件下,探究股骨假体、胫骨假体以及衬垫上的Mises应力,并通过对比衬垫内外侧的接触面积,分析全膝关节置换后膝关节生物力学变化和运动行为的改变。
结果与结论:①在0°-30°的屈膝过程中,2种假体衬垫上的Mises应力峰值均表现出先减小后增大的趋势,且内侧始终大于外侧。②非对称型设计的假体与后稳定型假体相比,应力峰值更低;在屈膝30°时,非对称型假体衬垫内外侧的Mises应力峰值分别为15.81 MPa和
11.95 MPa,后稳定型衬垫为16.70 MPa和13.76 MPa,两者内侧差值约为5.33%,而外侧则相差13.15%;对比股骨假体和胫骨假体上的Mises应力峰值,非对称型假体在屈膝过程中始终低于后稳定型假体。③在0°站立位时,后稳定型假体衬垫的内侧接触面积为17.96 mm2、外侧为34.10 mm2;而非对称型假体衬垫的内外侧接触面积分别为105.47 mm2和107.80 mm2,具有更大的接触面积且两侧差距更小。④结果表明,非对称型假体的生物力学表现更好,且能够对维持膝关节稳定性、提升关节活动度有所帮助。这种设计能够在一定程度上还原膝关节以内侧髁为轴进行外旋的运动机制,是一种更为有效的膝关节假体选择方案。

https://orcid.org/0009-0002-2559-096X (苏德君) 



中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 膝关节, 全膝关节置换, 非对称型假体设计, 生物力学, 有限元分析

Abstract: BACKGROUND: Total knee arthroplasty serves as an effective intervention for the treatment of late-stage knee joint disorders. However, prosthetic liners are prone to wear and failure due to internal stress variations, resulting in limited lifespan and decreased postoperative patient activity. Addressing how to enhance prosthetic design to meet a broader range of patient needs constitutes a significant focus in prosthesis research.
OBJECTIVE: Based on the morphological design of the meniscus, we propose an asymmetric design prosthesis and compare it with a symmetric posterior stabilized prosthesis. The stress distribution patterns and variations in the contact area of the liners for both prostheses were analyzed to explore whether the asymmetric prosthesis design offers advantages over the symmetric design.


METHODS: Using the finite element method, we simulated the osteotomy and prosthesis assembly in a knee osteoarthritis patient. Two different prostheses (asymmetric design and posterior stabilized) were employed to establish post-total knee arthroplasty knee joint models. Under flexion conditions at 0°, 10°, 20°, and 30°, we investigated the Mises stress on the femoral and tibial components as well as the liner. Additionally, by comparing the contact area on the inner and outer sides of the liner, we aimed to explore the changes in biomechanics and alterations in motion behavior in the post-total knee arthroplasty knee joint.
RESULTS AND CONCLUSION: (1) Throughout the flexion range from 0 to 30 degrees, the Mises stress peak on the liner exhibited a trend of initial decrease followed by an increase, with the stress on the medial side consistently surpassing that on the lateral side. (2) In comparison to the posterior stabilized prosthesis, the asymmetrically designed prosthesis demonstrated smaller stress peaks. At a flexion angle of 30 degrees, the Mises stress peak values of the medial and lateral parts of the asymmetric prosthesis were 15.81 MPa and 11.95 MPa, and those of the posterior stabilization prosthesis were 16.70 MPa and 13.76 MPa. The difference of Mises stress on the medial part was 5.33%, and the difference of Mises stress on the lateral part was 13.15%. Comparing the peak Mises stress on the femoral and tibial components, the asymmetric component was always lower than the posterior stable component during knee flexion. 
(3) In the upright position at 0 degrees, the medial contact area of the posterior stabilization prosthesis was 17.96 mm2, and the lateral contact area was 
34.10 mm2. The contact area on the inner and outer sides of the asymmetric design prosthesis liner was 105.47 mm2 and 107.80 mm2, respectively, indicating a larger contact area with a smaller difference between the inner and outer sides. (4) These results suggest that the biomechanical performance of the asymmetric prosthesis is superior, contributing to the maintenance of knee joint stability and improved joint mobility. This design, to a certain extent, mimics the rotational motion mechanism of the knee joint about the medial condyle as an axis, making it a more effective choice for knee joint prosthesis selection.

Key words: knee joint, total knee arthroplasty, asymmetric design prosthesis, biomechanics, finite element analysis

中图分类号: