中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (33): 5265-5270.doi: 10.12307/2022.712

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

儿童颈椎关节突关节有限元模型的建立与验证

和雨洁1,李  沛2,薛明明3,李志军1,李筱贺1,王  星1,高明杰1,邬  超2,康志杰4,张少杰1,王海燕1   

  1. 内蒙古医科大学,1基础医学院人体解剖学教研室,2第一临床医学院,3基础医学院生理学教研室,4研究生学院,内蒙古自治区呼和浩特市   010010
  • 收稿日期:2021-08-25 接受日期:2021-11-13 出版日期:2022-11-28 发布日期:2022-03-30
  • 通讯作者: 王海燕,硕士,教授,硕士生导师,内蒙古医科大学基础医学院人体解剖学教研室,内蒙古自治区呼和浩特市 010010 张少杰,硕士,教授,内蒙古医科大学基础医学院人体解剖学教研室,内蒙古自治区呼和浩特市 010010
  • 作者简介:和雨洁,女,1988年生,汉族,2019年内蒙古医科大学毕业,硕士,讲师,主要从事儿童脊柱解剖研究。 李沛,男,2000年生,在校本科生,主要从事医学影像学方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(81860383),项目负责人:李志军;内蒙古自然科学基金资助项目(2021MS08086),项目负责人:王海燕;内蒙古自然科学基金资助项目(2019MS08017),项目负责人:张少杰;内蒙古医科大学2020年大学生科技创新“英才培育”项目(YCPY20200015),项目负责人:王海燕;内蒙古医科大学2020年大学生科技创新“英才培育”项目(YCPY20200018),项目负责人:和雨洁;内蒙古医科大学第一临床医学院 2020年大学生“启蒙计划”项目(FYQMJH2020033),项目负责人:王海燕;内蒙古医科大学2020年“三位一体”大学生创新创业培育项目(SWYT2020025,SWYT2021007),项目负责人:王海燕;内蒙古医科大学2020年“三位一体”大学生创新创业培育项目(SWYT2020021,SWYT2021016),项目负责人:和雨洁;内蒙古医科大学 2020 年度校级科研项目“成果转化”项目(YKD2020CGZH009),项目负责人:王海燕;内蒙古自治区级大学生创新创业训练计划项目(201910132019),项目负责人:王海燕;内蒙古自治区科技发展计划项目(2019GG115),项目负责人:李志军

Establishment and validation of finite element model of cervical facet joint in children

He Yujie1, Li Pei2, Xue Mingming3, Li Zhijun1, Li Xiaohe1, Wang Xing1, Gao Mingjie1, Wu Chao2, Kang Zhijie4, Zhang Shaojie1, Wang Haiyan1   

  1. 1Department of Human Anatomy of Basic Medical College, 2First Clinical Medical College, 3Department of Physiology of Basic Medical College, 4Graduate school, Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China
  • Received:2021-08-25 Accepted:2021-11-13 Online:2022-11-28 Published:2022-03-30
  • Contact: Wang Haiyan, Master, Professor, Master’s supervisor, Department of Human Anatomy of Basic Medical College, Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China Zhang Shaojie, Master, Professor, Department of Human Anatomy of Basic Medical College, Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China
  • About author:He Yujie, Master, Lecturer, Department of Human Anatomy of Basic Medical College, Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China Li Pei, First Clinical Medical College, Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China He Yujie and Li Pei contributed equally to this article.
  • Supported by:
    National Natural Science Foundation of China, No. 81860383 (to LZJ); Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2021MS08086 (to WHY); Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2019MS08017 (to ZSJ); Undergraduate Science and Technology Innovation "Cultivation of Talents" Project of Inner Mongolia Medical University in 2020, No. YCPY20200015 (to WHY), No. YCPY20200018 (to HYJ); College Student Enlightenment Project of the First Clinical Medical University of Inner Mongolia Medical University in 2020, No. FYQMJH2020033 (to WHY); “Trinity” College Student Innovation and Entrepreneurship Cultivation Project of Inner Mongolia Medical University in 2020, No. SWYT2020025, SWYT2021007 (to WHY), No. SWYT2020021, SWYT2021016 (to HYJ); School-Level Scientific Research Project "Achievement Transformation" Project of Inner Mongolia Medical University in 2020, No. YKD2020CGZH009 (to WHY); Inner Mongolia Autonomous Region-Level University Student Innovation and Entrepreneurship Training Program, No. 201910132019 (to WHY); Science and Technology Development Program of Inner Mongolia Autonomous Region, No. 2019GG115 (to LZJ)

摘要:

文题释义:
颈椎:位于脊柱颈段,共7块。C1(又称寰椎)呈环状,无椎体、棘突和关节突,由前弓、后弓和侧块构成,侧块上面有一椭圆形关节面,与枕髁构成寰枕关节;C2(又称枢椎)椎体向上伸出齿突,与寰椎前弓后面中央的齿突凹构成寰枢关节;C3-C7因其解剖结构和功能与C1和C2有明显不同,故临床称为下颈椎。
关节:是骨连结的最高分化形式,关节的相对骨面互相分离,具有充以滑液的腔隙,借其周围的结缔组织相连接,通常具有较大的活动性。

背景:由于儿童颈椎尚未发育成熟,韧带相对松弛、关节面相对水平、钩椎关节开始发育,因此儿童颅颈交界区和下颈椎更易损伤。研究儿童颈部的力学特性和损伤机制对于其保护和治疗具有重要意义。
目的:建立4岁儿童全颈椎有限元模型,对比分析各节段关节面的最大应力值,了解其不同运动状态下的力学变化规律。
方法:将连续扫描的颈椎断层影像原始数据以DICOM格式导入Mimics 21.0软件,分别重建C0-T1的3D模型,再导入到3-Matic软件,建立椎间盘初步几何模型,然后进行去噪、铺面、平滑等处理,完善后的模型导入Hypermesh软件进行网格划分,对材料进行属性赋值后导入ANSYS 19.2软件中建立有限元模型,设定边界和载荷条件,观测各节段关节活动度及关节面的应力应变值。
结果与结论:①在前屈、后伸、左侧屈和右侧屈状态下,小关节活动度最大值均位于C4/5(4.71°,4.13°,7.21°,7.22°),而在轴向旋转(左旋转、右旋转)状态下,活动度最大值则位于C2/3(9.54°,9.65°);②椎间盘最大应力在右侧屈状态下明显大于其余运动状态,除前屈状态最大应力值位于C5-6(0.235 MPa),其余状态椎间盘最大应力值均位于C6-7;C2-3节段椎间盘在6种工况下的最大应力均小于其余节段;③同一椎体的下关节突关节面最大应力在6种工况下均大于上关节突关节面,随椎序的增加呈递增趋势,峰值位于后伸位C6下关节突关节面      (1.481 MPa),谷值位于前屈位C2上关节突关节面(0.005 MPa);④结果表明,C2/3-C6/7颈椎小关节活动度最大节段位于C2/3,且其最大位移值与最大应力呈负相关,由此颈椎失稳常见于上颈椎节段;颈椎右侧屈位时C6-7节段椎间盘应力值最大,是颈椎间盘突出的常见部位;C6/7关节突关节无论在何种工况运动状态,关节所受到的牵拉负荷最大,是颈椎小关节源性颈椎病的常见部位。

https://orcid.org/0000-0002-1977-3180 (和雨洁);https://orcid.org/0000-0002-2753-0517 (李沛) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 颈椎, 关节突关节, 学龄前儿童, 有限元, 活动度, 力学载荷, 数字模型

Abstract: BACKGROUND: The cervical vertebra in children is not yet mature. The ligaments are relatively relaxed. The articular surface is relatively horizontal. The uncinate vertebra joint begins to develop. Therefore, the superior cervical junction area and the lower cervical vertebra in children are vulnerable to injury. It is of great significance to study the mechanical properties and injury mechanism of children’s neck for its protection and treatment.  
OBJECTIVE: The finite element model of the whole cervical vertebra of a 4-year-old child was established to compare and analyze the maximum stress value of the joint surface of each segment, so as to understand the mechanical change rule under different motion states.
METHODS: The original data of continuous cervical spine tomography images were imported into Mimics 21.0 in DICOM format to reconstruct C0-T1 respectively, imported into 3-Matic to establish a preliminary geometric model of the disc, and then processed with denoising, paving, and smoothing. The improved model was imported into Hypermesh software for mesh division. After attribute assignment, the material was imported into the finite element model displayed in ANSYS 19.2, and the boundary and load conditions were set to observe the range of motion of the joint and the stress and strain values of the joint surface of each segment.  
RESULTS AND CONCLUSION: (1) The maximum range of motion of the facet joint was C4/5 (4.71°, 4.13°, 7.21°, 7.22°) in the forward flexion, backward extension, left flexion, and right flexion, and C2/3 (9.54°, 9.65°) in the axial rotation (left rotation and right rotation). (2) The maximum stress of the disc in the right flexion state was significantly greater than that in the other motion states. The maximum stress of the disc in the forward flexion state was at C5-6 (0.235 MPa) and the maximum stress of the disc in the other states was at C6-7. The maximum stress of the disc at C2-3 segment was smaller than that at  the other segments under the six conditions. (3) Under the same vertebral articular process joint surface, maximum stress under six conditions was greater than articular process on the joint surface, increasing trend with the increase of the operation sequence. The peak was located in the stretched position C6 articular process under the joint surface (1.481 MPa) and the valley value was located in forward flexion joint surface on a C2 (0.005 MPa). (4) In conclusion, the maximum range of motion of the cervical facet joint was located at C2/3, which was negatively correlated with its maximum displacement and maximum stress. Therefore, cervical instability was more common at the upper cervical segment. At the right flexion of the cervical spine, the stress value of the disc at the C6-7 level was the greatest, which was easy to cause cervical disc herniation. The C6/7 facet joint has the largest pulling load no matter what kind of working condition it is in and it is a common site of cervical facet joint induced cervical spondylosis.

Key words: cervical spine, facet joint, preschool child, finite element, motion range, mechanical load, digital model

中图分类号: