中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (27): 4307-4311.doi: 10.12307/2021.187

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

考虑肌肉因素的腰椎力学计算方法

关天民,陈向禹,朱  晔   

  1. 大连交通大学机械工程学院,辽宁省大连市   116028
  • 收稿日期:2020-11-02 修回日期:2020-11-05 接受日期:2020-12-18 出版日期:2021-09-28 发布日期:2021-04-10
  • 通讯作者: 朱晔,博士,讲师,大连交通大学机械工程学院,辽宁省大连市 116028
  • 作者简介:关天民,男,1963年生,河南省襄城县人,2005年大连交通大学毕业,博士,教授,博士生导师。

Mechanics calculation method of lumbar spine considering muscle factors

Guan Tianmin, Chen Xiangyu, Zhu Ye   

  1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China
  • Received:2020-11-02 Revised:2020-11-05 Accepted:2020-12-18 Online:2021-09-28 Published:2021-04-10
  • Contact: Zhu Ye, MD, Lecturer, School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China
  • About author:Guan Tianmin, MD, Professor, Doctoral supervisor, School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China

摘要: 文题释义:
椎旁肌:包括浅层纵向长纤维竖脊肌(棘肌、最长肌、骼肋肌)和深层斜向短纤维横突棘肌(半棘肌、多裂肌、回旋肌),其主要功能是伸展脊柱,在一定程度上参与脊柱旋转,对脊柱起到稳定作用。
图像分割:就是把图像分成若干个区域并提取所需要目标的技术和过程,现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

背景:椎旁肌肉对于维持脊柱平衡起着至关重要的作用,骨肌有限元模型更加接近人体生物力学环境,但目前脊柱有限元分析中肌肉建模比较复杂或将肌肉力简化处理。
目的:对椎旁肌模型进行快速建立,并进行肌肉力的加载分析。
方法:基于逆向工程原理,通过CT图像数据进行脊柱模型的三维重建,对竖脊肌中的腰部最长肌及韧带通过弹性模量、肌肉生理横截面积及肌线平均长度进行弹簧刚度的计算,通过上下附着点进行肌肉建模;对建立的有限元模型进行生物力学验证,施加4 N•m的弯矩模拟腰椎进行前屈后伸、左右侧弯、左右旋转。

结果与结论:①生物力学验证表明腰椎L4-L5在受轴向载荷作用下表现出弹性性质;②通过对腰椎进行前屈后伸、左右侧弯、左右旋转分析,证实建立了符合腰椎活动度的骨肌有限元模型;③带肌肉组织的腰椎有限元模型建模简单且符合人体生物力学特性,可为接下来分析脊柱在矫形力加载下的变化提供参考。

https://orcid.org/0000-0003-1663-537X (关天民) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 腰椎, 生物力学, 骨肌模型, CT数据, 图像分割, 逆向工程, 有限元

Abstract: BACKGROUND: Paravertebral muscles play an important role in maintaining spinal balance. The finite element model of skeletal muscle is more close to the biomechanical environment of human body. However, the muscle modeling in the finite element analysis of the spine is more complex or the muscle force is simplified in the current finite element analysis of the spine.  
OBJECTIVE: To quickly establish the paravertebral muscle model and analyze loading of muscle force.
METHODS:  Based on the principle of reverse engineering, the three-dimensional reconstruction of the spine model was carried out through CT image data. The spring stiffness of the longest lumbar muscle and ligament in the erector spinalis muscle was calculated through the elastic modulus, muscle cross-sectional area and average length of muscle line. The muscle modeling was carried out through the upper and lower attachment points, and the biomechanical verification of the established finite element model was carried out. The lumbar spine was simulated by applying a bending moment of 4 N•m for flexion and extension, left and right lateral bending, left and right rotation.  
RESULTS AND CONCLUSION: (1) Biomechanical verification showed that L4-L5 showed elastic properties under axial load. (2) Through the analysis of lumbar flexion and extension, left-right lateral bending and left-right rotation, a finite element model of skeletal muscle was established, which was consistent with the range of motion of lumbar spine. (3) The finite element model of lumbar spine with muscle tissue conforms to the biomechanical characteristics of human body, which provides a reference for analyzing the changes of the spine under orthopedic force.

Key words: lumbar spine, biomechanics, skeletal muscle model, CT data, image segmentation, reverse engineering, finite element

中图分类号: