BACKGROUND: Sodium hyaluronate is an effective treatment for osteoarthritis, but the underlying mechanism remains unclear. There is evidence that abnormal expressions of matrix metalloproteinase (MMP)-1, -3 and -9 and tissue inhibitor of metalloproteinase (TIMP)-1 and -2 show great effects on osteoarthritis.
OBJECTIVE: To assess the influence of intra-articular injection of sodium hyaluronate on expressions of MMPs-1, 3, 9 and tissue inhibitor of TIMPs-1, 2 in the rabbit cartilage after osteoarthritis.
METHODS: Twenty-four mature New Zealand white rabbits were divided into normal control, model, and sodium hyaluronate groups. The model and sodium hyaluronate groups underwent unilateral anterior cruciate ligament transection, and rabbits in the sodium hyaluronate group received 0.3 mL of 1% sodium hyaluronate via intra-articular injection at 4 weeks after modeling, once a week for 5 weeks. At 11 weeks following surgery, the rabbits were killed and the cartilage was harvested to extract total RNA. mRNA expressions of MMPs-1, 3, 9 and TIMPs-1, 2 in the cartilage were analyzed using real-time PCR for each group.
RESULTS AND CONCLUSION: Compared with the model group, the range and extent of cartilage damage was reduced in the sodium hyaluronate group (P < 0.01), and Mankin scores were noticeably decreased (P < 0.05). In the cartilage, mRNA expressions of MMPs-1, 3, 9 were enhanced and mRNA expressions of TIMPs-1, 2 were down-regulated in the model group. However, the mRNA expression levels of MMPs-1, 3, 9 and TIMPs-1, 2 in the articular cartilage were not obviously changed in the sodium hyaluronate group. These results suggest that MMPs-1, 3, 9 and TIMPs-1, 2 are involved in the progression of osteoarthritis and the therapeutic mechanism of sodium hyaluronate is not realized through the down-regulation of their expressions during development of osteoarthritis. Sodium hyaluronate for treatment of osteoarthritis is a complex process and the underlying mechanisms require further investigation.
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程