Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (25): 4699-4706.doi: 10.3969/j.issn.2095-4344.2013.25.019
Previous Articles Next Articles
Li Wei1, Dai Jiang-hua2, Luo Jun2, Dai Min3, Gao Qian-kun1
Received:
2012-12-14
Revised:
2013-01-09
Online:
2013-06-18
Published:
2013-06-18
Contact:
Dai Jiang-hua, M.D., Attending physician, Second Affiliated Hospital of Nanchang University, Regeneration and Rehabilitation Research Centre for Bone and Nerve of Nanchang University, Nanchang 330006, Jiangxi Province, China
daijianghua04@yahoo.com.cn
About author:
Li Wei★, Studying for master’s degree, Graduate School of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
liwei66666666@qq.com
Supported by:
the National Natural Science Foundation of China, No. 81160184; the Natural Science Foundation of Jiangxi Province, No. 20114BAB205044
CLC Number:
Li Wei, Dai Jiang-hua, Luo Jun, Dai Min, Gao Qian-kun. A membrane controlled release drug delivery system promotes injured tissue repair [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(25): 4699-4706.
随着大量新型高分子材料进入药剂领域,推动了药物缓控释剂型的发展。高分子药物控制释放体系,就是利用天然或合成的高分子化合物作为药物载体或介质,以不同方式组合到制剂中,起到控制药物的释放速率、释放时间以及释放部位的作用。 作为药物缓控释体系其载体应该满足下列条件[1]:①具备一定的载药量:即能混合在载体材料中药物的含量。②药物分散性:药物应该能同质的分布于整个载体中或者特定区域。③亲和力:即药物与载体的结合程度,亲和力应该足够低,满足释放要求。④释放动力学:需控制在给定周期内允许适当的药物剂量达到指定部位。⑤稳定性:负载于载体内的药物在生理环境中能保持结构和性能的稳定。 2.1 天然高分子载体成膜 天然高分子具有良好的生物相容性,可用于药物载体,如壳聚糖及其衍生物、丝胶蛋白、丝素蛋白、纤维蛋白和胶原蛋白等。天然高分子载体的降解机制主要是能被各种酶降解。壳聚糖的主要成分是氨基多糖,与人体细胞外基质结构相似[2],降解后能与组织整合,降解产物无致敏、致畸及炎症反应;因具备溶解性、黏性、可剪切性、亲水溶胀性、成膜性、生物可降解性和良好的生物相容性,作为一种新型生物高分子材料,被广泛应用在医学领域,如组织工程支架、药物缓释载体分离膜和抗菌涂料等[3-4]。壳聚糖主要的生物学功能为调节细胞生长、抑制微生物生长、促进凝血及加快创口愈合。许多研究者将壳聚糖与胶原、明胶、透明质酸、羟基磷灰石等材料以不同比例通过不同结合方式制成复合材料,以期提高可吸收膜的生物性能[5-9]。另外,将生长因子与壳聚糖复合制备有诱导骨再生作用的活性可吸收生物膜也倍受重视。壳聚糖成膜后在缓释药物和定向运送药物方面具有重要的研究和开发价值,常被用作药物缓释的载体[10],壳聚糖温敏凝胶作为蛋白和药物载体的研究近年来受到广泛关注,作为缓控释支架材料既可以包载生长因子,同时又可以根据生物需要量以适当浓度缓慢地将生长因子释放到目标组织以达到修复目的[11-16]。Cui等[17] 利用了壳聚糖/β-甘油磷酸钠温敏凝胶体系的优良特点,在生理条件下复合生长因子制备了壳聚糖/β-甘油磷酸钠复合膜,研究得出壳聚糖/β-甘油磷酸钠温敏凝胶膜具有多孔结构和良好的生物活性,能促进成纤维细胞的体外增殖,作为一种新型引导组织再生膜具有良好的应用前景。张幼珠等[18]以丝素蛋白作为药物载体,吲哚美辛和利福平作为模型药物,采用溶剂蒸发法和冷冻干燥法制备含药物的丝素膜;采用体外释放法将药膜置于一定pH值的溶液中释放,用紫外及可见分光光度法测定释放液中的药物含量,以研究药膜中药物的释放性能。实验结果表明,丝素蛋白膜对药物具有良好的控制释放作用。Ruszczak等[19]报道,由于胶原具有良好的生物相容性和无毒性,已被用于和其他高分子共聚作为多种药物控制释放载体。杨小红等[20]采用Ⅰ型胶原为主要原料,研制出Ⅰ型胶原凝胶复合物,经实验证明,Ⅰ型胶原可促进肉芽生长及上皮再生,是促进伤口愈合的良好生长材料。Shi等[21]研究能捕捉组织干细胞的胶原生物材料,发现胶原膜共轭干细胞特定共价抗体通过与干细胞结合的方式能捕获干细胞,从而有效促进组织损伤修复。王建华等[22]在对胶原交联剂改良优化的基础上,设计并制备了一种具有双层疏密结构不同的胶原基材料,将载生长因子的壳聚糖- 肝素纳米粒子引入该材料,制备了一种定向生长因子控缓释胶原基引导组织再生材料;陈建霖等[23]将两种生长因子与胶原膜结合制成碱性成纤维细胞生长因子/骨形态发生蛋白/胶原膜,应用于治疗兔下颌骨骨折,通过临床大体观察和X射线观察证实,该生长因子缓释系统能够缓慢释放生长因子,并能在局部维持较稳定的药物浓度,加速骨折愈合,并提高骨折愈合的效果。蔡明铭等[24]将更昔洛韦与纤维蛋白胶混合,然后胶联于羊膜制成复合膜,进行体内与体外释放实验,结果显示复合膜具有良好的缓释性能,可用于治疗病毒性角膜炎。Li等[25]自制冻干双层纤维蛋白结合羊膜作为药物输送系统,通过局部缓控释放的5-氟尿嘧啶实现其在青光眼手术兔模型的抗纤维化效果。廖红胜 等[26]制备纳米羟基磷灰石/胶原材料复合硫酸庆大霉素缓释系统,将聚合物植入大鼠股四头肌,术后取股四头肌肌肉组织,光镜下观察肌肉组织的炎性反应,证实其在体内有较好的缓慢释放效应,是一种较好的治疗骨组织感染的生物材料。 2.2 合成高分子载体成膜 由于天然高分子材料的来源、处理方法等不同,常会造成产品性能难以重现,而且其力学性能、加工性能也较差,常难以符合医学应用的要求。合成高分子材料由于正好可以弥补天然材料所存在的缺点,逐渐成为药物缓释载体的主要来源,它们主链上都含有容易被水解的基团,这类高分子载体的降解机制主要是大分子链水解,因此载体材料的吸水率与膨胀度对药物释放速度影响很大,如脂肪族聚酷类、聚乙烯醇、聚氨酷类和聚磷酸酷类等[27]。岳凌等[28]应用冷冻-解冻法制备了加入硫酸庆大霉素的聚氧乙烯和聚乙烯醇水凝胶膜,测定水凝胶膜性能结果表明,该法制备的水凝胶膜具有良好的理化性能和抗生素缓释功能,在组织损伤修复中效果良好。Chen等[29]发展新奇的三明治结构纳米纤维膜作为万古霉素、庆大霉素、利多卡因的缓释载体来修复感染伤口,利用静电纺丝技术将聚乳酸-羟基乙酸、壳聚糖及不同种类的抗生素混合制备仿生可降解的纳米纤维生物膜。对大鼠感染伤口修复进行了研究,结果表明纳米纤维膜能有效加速伤口早期愈合,达到了各种药物的长期缓控释放。在牙周治疗中应用引导组织再生屏障膜可确保分离的牙根表面重新被牙周膜细胞填充,使组织能够再生,Owen等[30]通过聚乳酸-羟基乙酸加载四环素或者盐酸盐成膜来评估聚乳酸-羟基乙酸是否适合作为引导组织再生膜的材料。结果表明聚乳酸-羟基乙酸薄膜药物的释放速率呈浓度依赖性增加,药物释放曲线为术后第1天呈现小的最初的爆发阶段,然后缓慢持续释放,最后几乎全部释放,牙周膜细胞的形态并没有受到四环素的影响,表明复合膜可以作为引导组织再生膜。引导组织再生膜需要展现:生物相容性,让其与宿主组织整合,而不会引起炎症反应;适当的降解性,配合新的组织形成;有足够的机械和物理性能,以允许其放置在体内;有足够的持续强度,以避免膜的崩溃并执行其屏障功 能[31-58]。新颖的药物输送系统连续缓释疗法已被广泛研究用于慢性疾病的预防和管理。这些系统的使用以提高患者的依从性,同时提高治疗指数,减少全身毒性。Sih等[59]评估植入纳米药物输送系统长期持续释放阿托伐他汀和白藜芦醇的效果发现,其能防止动脉粥样硬化和血脂异常,促进心脏保护作用。 2.3 加载微球微丸成膜 微球型载体主要是通过将药物分子包埋在高分子聚合物载体内或表面上实现药物的传输。微球输送体系表面积较大,载药量较高;而且相比其他剂型,微球和薄膜具有较高的亲和性,可增加药物吸收和靶向性[60]。用作微球的材料主要有脱乙酰壳多糖、明胶、藻酸盐、多糖基水凝胶及聚乳酸、聚乙醇酸、聚乳酸-聚乙醇酸共聚物等[61],基于微球、纳米球的丝素蛋白,因其生物相容性、生物降解性、可调加载和释放药物性质为药物释放提供了新的方法[62],在各种生物医学应用中有潜力作为药物释放载体。作为多单元型给药系统的代表,微丸具有传统单剂量型缓释制剂不可比拟的诸多优点[63],膜控型微丸通过选择不同渗透性的高分子材料及添加致孔剂等方式可实现溶解性不同药物的理想释放。壳聚糖微球表面和内部存在差异,具有尺寸小、功能基在表面富集、优良的包埋性能等特点。与传统药剂相比,用壳聚糖包裹药物制备的微球可显著减少服药次数,屏蔽药物的刺激性气味,延长药物活性,控制药物释放剂量,提高药物疗效及拓宽给药途径等。陈红丽 等[64]采用W/O/O溶剂挥发法制备硫酸长春新碱的聚乳酸-羟基乙酸微球,并对微球性质表征,采用二次冻干法制备载硫酸长春新碱微球的胶原-壳聚糖药膜,结果显示硫酸长春新碱制成聚乳酸-羟基乙酸微球后再制备成药膜,可达到双重缓释作用,明显减少药物突释,并延缓药物释放。唐涛等[65]将载有生长因子的钙藻酸盐微球与主体羟基磷灰石羧甲基壳聚糖混合,利用静电纺丝技术制得具有“串珠”丝状结构的复合纤维膜,其具有良好的生物相容性和降解性,一方面能诱导牙周组织生长,另一方面能阻挡结缔组织和上皮细胞进入牙周组织缺损区域,引导牙周组织再生。 2.4 膜缓释系统影响因素 药物控释的方式包括凝胶、膜和多孔体等。在药物控释方法中膜技术能保持药物的恒速释放。载药膜的释放速度主要与以下3个因素有关:①膜的吸水性和溶胀度。溶胀度是膜物理性能的重要指标,表征膜从开始溶胀至溶胀达到极限时释放药物的能力。研究发现只要缓释载体膜较药物的降解时间长,就可以使包覆在其中的药物恒速释放,因此通过选择载体膜的生物降解特性,可以控制药物的释放速度。同时可以根据药物释放需要的时间选择相应的溶胀度实验方案,如用于促进骨细胞生长(骨结合时间需要至少3个月)的多肽蛋白的传输与释放,可选择溶胀度较小的膜[66]。②膜的渗透性。膜的渗透性主要是指膜对所包埋药物的渗透性,表征膜内药物在释放环境中因为浓度梯度差向外扩散,透过膜的能力。膜的渗透性好,那么药物就容易通过膜扩散到外部环境中;膜的渗透性差,则药物的扩散释放时间就会延长,达到缓释效果。膜的渗透性取决于制备膜的工艺,如适量添加剂的加入可以使PVA缓释膜在温水中形成微孔,方便药物的释放[67]。③复合膜的组分浓度。复合膜中各组分的浓度也可以影响药物的释放速度,在质量比达到特定数值时药物释放速度能满足特定的要求。制备复方土牛膝口炎膜,在卡波姆/羟丙甲纤维素为1∶3时加入2%甘油、0.3%聚山梨 醇酷,药膜性质稳定,可达到在口腔内用药的缓释效果[68]。载药膜的释放速度还与膜的机械强度、透光度等有关。一般来说,膜的机械强度低,透光好,那么载药膜的释放速度相对较快。 2.5 存在的问题与对策 随着经济和科学技术的发展,新辅料、新材料、新设备和新工艺的不断涌现及药物载体的修饰等,缓释、控释制剂领域的探索和发展取得了一定的进展,但是完全达到理想的应用标准还有一定的差距。 2.5.1 目前存在的问题 ①载体材料的选择,现存在的各种生物活性材料彼此之间各有利弊,如何使他们之间的优势互补,从而达到与人体本身组织特征高度一致接近性;如何获得合适的释药速度和良好的缓释功能,避免缓释系统引起的机体抗药性。②对于毒性大的药物,要考虑药物稳定性问题,提高载体的载药量,减少在循环中的降解,减少对正常组织的毒副作用。③探寻靶向药物在体内的药物动力学规律,注意为实现靶向性而对载体材料改性时引发的材料生物相容性问题,以及如何简化生产工艺和降低生产成本。④目前膜引导骨再生技术多利用引导膜形成一个机械屏障,阻止生长速度较快的组织细胞(如成纤维细胞)长入,避免纤维化和瘢痕形成,在膜下提供一个引导骨再生的空间,保护种子细胞的分化和增 殖[69]。应用中发现缓释膜的屏障能力有限,可吸收胶原膜的暴露率较低,但由于胶原的抗张强度较小导致其机械强度差,对于空间的维持能力不如不可吸收膜,常会发生术后膜塌陷及移位。⑤组织缺损的再生修复需要募集大量有增殖能力的干细胞归巢,在损伤微环境中定植分化,但目前此类研究仍处于起步阶段。 2.5.2 研究设想 基于文献报道和前期研究结果,一方面,需要学者们进一步深入探讨材料理想缓控释效果、生物相容性及物理性能等基本问题;另一方面,加强膜材料的仿生基础研究是一个重要研究方向。课题组利用膜缓控释给药系统制备引导骨再生膜,使其具有一定的生物力学性能及良好的缓控给药性能,为大段骨缺损再生修复提供无瘢痕化的安全诱导成骨微环境,同时又利用膜缓控释放基质细胞衍生因子1,募集干细胞向骨形成部位归巢。 膜缓控给药性能与引导组织再生膜屏障性能相结合:在放置引导骨组织再生膜时范围应超出骨缺损区边缘2.0-3.0 mm,并与骨面紧密贴合,用固定膜专用钉或种植体覆盖螺帽等方法固定。同时在屏障膜下充填骨移植材料,通过调整胶原/壳聚糖各自比例,增强膜的屏障性能,可防止膜塌陷,还可增加骨的生成 量[70-71]。膜下充填物有自体骨、异体骨、煅烧骨、羟基磷灰石等。这些材料中自体骨来源有限且需手术取骨,异体骨有排异反应,羟基磷灰石等无机材料也有各自的缺点需进一步完善研究。 膜缓控释给药系统募集干细胞归巢性能:目前的膜缓控给药系统不具备主动吸引干细胞定向迁移与分布的生物学功能。寻找理想的新型材料和高质量的缓控释放膜还有待于临床工作者进一步深入研究。经体外扩增大量具有成骨活性的细胞作为种子细胞,以多孔材料作为细胞外基质,在体外共同构建细胞-材料复合物,是通常采用的骨组织工程研究方法。多孔材料中携带种子细胞在骨缺损的愈合中起到了重要作用, 这些细胞经体外研究表明具有一定的增殖能力,在一定程度上提高了局部骨缺损的成骨,这已经在微小动物如鼠、兔的小块骨缺损修复实验中取得成功,但对于大块骨缺损,其修复需要大量具有迁移和长期定植能力的种子细胞才能实现,趋化因子受体4阳性表达的骨髓基质干细胞可满足其克隆化及支架重塑型的需要,是骨缺损修复取得成功的关键因素[72-74]。 研究表明,基质细胞衍生因子1通过活化其G蛋白耦联的跨膜受体趋化因子受体4来调控骨髓基质干细胞向组织损伤部位归巢[75-76]。基质细胞衍生因子1及其受体趋化因子受体4构成基质细胞衍生因子1/趋化因子受体4轴,在组织损伤修复过程中发挥重要调控作用。损伤部位基质细胞衍生因子1的分泌增加,趋化因子受体4阳性的干细胞沿着基质细胞衍生因子1浓度梯度迁移到达损伤部位,参与损伤组织修复与重建。再生生物学证据显示,内源性的干细胞和前体细胞能够对周围环境刺激作出反应,被募集参与新生组织的形成[77],在很大程度上骨损伤的再生修复过程通常被认为是骨发育事件中成骨前体细胞/干细胞迁移、增殖和分化过程的重现[78]。在胚胎软骨发育过程中基质细胞衍生因子1在骨外膜中高效表达,但出生后其表达大幅度下降[79]。以带骨膜的活骨植入鼠节段性股骨缺损部位,发现植入物骨外膜基质细胞衍生因子1的表达高度增强,显示基质细胞衍生因子1/趋化因子受体4轴在募集骨髓基质干细胞向骨形成部位的归巢中发挥了关键作用,并且能明显促进归巢的骨髓基质干细胞以软骨成骨的方式进行骨再生,被认为能重现胚胎软骨发育模式来实现鼠节段性骨缺损的再生修复。Granero-Moltó等[80]应用生物发光成像技术证实,小鼠活体内骨髓基质干细胞向胫骨骨折局部归巢完全依赖于趋化因子受体4的阳性表达,且呈时间和剂量依赖性。 壳聚糖/胶原载体生物相容性良好,且具有可控的生物降解性能,可作为基质细胞衍生因子1的缓释载体,延缓基质细胞衍生因子1降解速度,延长其对趋化因子受体阳性骨髓基质干细胞定向迁移的作用[81]。因此,将基质细胞衍生因子1复合在壳聚糖、胶原内,构建基质细胞衍生因子1/壳聚糖/胶原复合膜可发挥基质细胞衍生因子1的缓控释放,从而实现其长期介导趋化因子受体阳性骨髓基质干细胞定向迁移的功能,募集骨髓基质干细胞向骨形成部位的归巢。因此,实验设计的基质细胞衍生因子1/壳聚糖/胶原复合膜位于植入的组织工程骨外围,与大节段骨缺损骨外膜部位形态一致,此为结构上的仿生;复合膜缓控释放基质细胞衍生因子1,长期介导趋化因子受体阳性骨髓基质干细胞定向迁移,与胚胎软骨发育过程中基质细胞衍生因子1在骨外膜中高效表达募集干细胞归巢进行骨再生的功能相似,此为功能上的仿生。"
[1] Sokolsky-Papkov M,Agashi K,Olaye A,et al.Polymer carriers for drug delivery Intissue engeneering, Adv Drug Deliv Rev. 2007;59(1):187-206. [2] van de Vord PJ,Matthew HW,de Silva SP,et al.Evaluation of the biocompatibility of a chitosan scaffold in mice.J Biomed Mater Res.2002;59(3):585-590. [3] Kawai T,Yamada T,Yasukawa A,et al.Biological fixation of fibrous materials to bone using chitin/chitosan as a bone formation accelerator. J Biomed Mater Res Part B Appl Biomater.2009;88(1):264-270. [4] Jayakumar R,Prabaharan M,Nair SV,et al.Novel chitin and chitosan nanofibers in biomedical applications.Biotechnol Adv.2010;28(1):142-150. [5] 王新木,董研,徐董,等.不同几丁糖-胶原膜物理性能的比较研究[J].浙江医学,2010,32(3):331-334. [6] Lee EJ,Shin DS,Kim HE,et al.Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials.2009;30(5):743-750. [7] Cheng XM,Li YB,Zuo Y,et al.Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration.Mater Sci Eng C.2009;29(1):29-35. [8] Jiang L Y,Li YB,Xiong CD.A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I.Preparation and properties.J Mater Sci:Mater Med.2009;20(8):1645-1652. [9] Krzesinska M,Majewska J.The development and characterization of a novel chitosan/carbonised yucca(Yucca flaccida)bio-composite.Mater Sci Eng C. 2010;30(2):273-276. [10] 刘贵春,王凌峰,巴特.医用壳聚糖膜的制备与应用[J].中国组织工程研究与临床康复,2011,15(47):8883-8886. [11] 吴广升,张艺文,王新文,等.壳聚糖温敏凝胶负载釉基质蛋白对骨髓基质细胞的作用[J].上海口腔医学,2009,18(2):178-182. [12] Shi W,Ji Y,Zhang X,et al.Charaeterization of Ph-andthermosensitive hydrogel as A vehiele for controlled Protein delivery,J Pharm Sci.2011;100(3):886-895. [13] 杨小竺,王 琳,宫 苹,等.几丁唐复合物修复骨缺损的实验研究[J].实用医学杂志,2007,23(10):1464-1467. [14] Canter HI,Vargel I,Korkusuz P,et al.Effect of use of slow release of bone morphpgenetic protein-2 and transforming growth factor-beta-2 in a chitosan gel matrix on cranial bone graft survival in experimental cranial critical size defect model.Ann Plast Surg.2010;64(3):342-350. [15] Engstrand T,Veltheim R,Arnander C,et al.A novel biodegradable delivery system for bone morphogenetic protein-2.Plast Reconstr Surg.2008;121(6):1920-1928. [16] Konas E,Emin MM,Korkusuz P,et al.Acceleration of distraction osteogenesis with drug-releasing distractor.J Craniofac Surg.2009;20(6):2041-2048. [17] Cui J,Jing BQ,Liang J,et al.Preparation and Characterization of Chitosan/β-GP Membranes for Guided Bone Regeneration. J Wuhan Univ Technol Mater Sci Ed. 2011;26(2):242-246. [18] 张幼珠,王朝霞,丁悦,等. 丝素蛋白作为药物控制释放材料的研究[J].蚕业科学,1999,25(3):181-185. [19] Ruszczak Z,Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs.Adv Drug Del Rev.2003;55(12): 1679-1698. [20] 杨小红,李斯明,戴丽冰,等.胶原凝胶复合物治疗褥疮的临床研究[J].创伤外科杂志,2000,2(4):219-221. [21] Shi CY,Li QG,Zhao YN,et al.Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration.Biomaterials. 2011;32(10):2508-2515. [22] 王建华,李学敏,陶晓军,等.碱性成纤维细胞生长因子/双层胶原基复合材料制备及其生物安全性[J].中国组织工程研究与临床康复,2011,15(47): 8801-8804. [23] 陈建霖,唐彦峰,胡学清,等.bFGF/BMP/胶原膜加速颌骨骨折愈合的大体及X 线观察[J].现代生物医学进展, 2011,11(9): 1655-1658. [24] 蔡明铭,赵敏.更昔洛韦/纤维蛋白胶/羊膜复合物的缓释特性[J].中国组织工程研究与临床康复,2011,15(3):419-422. [25] Li W,Chen WJ,Liu W,et al.Homemade lyophilized cross linking amniotic sustained-release drug membrane with anti-scarring role after filtering surgery in rabbit eyes.Int J Ophthalmol.2012;5(5):555-561. [26] 廖红胜,刘勇,杨述华,等.纳米羟基磷灰石/ 胶原材料复合硫酸庆大霉素缓释系统体内释放实验[J].华中科技大学学报:医学版, 2010,39(6):822-824. [27] 王丹.药物控释载体材料的性质[J].中国组织工程研究与临床康复,2008,12(6):1107-1110. [28] 岳凌,杨占山,杨淑琴,等.一种水凝胶药物缓释膜的制备及其性能研究[J].辐射研究与辐射工艺学报,2009,27(5):312-316. [29] Chen DW,Liao JY,Liu SJ,et al.Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repairof infected wounds: an in vitro and in vivo study.Int J Nanomedicine.2012;7:763-771. [30] Owen GR,Jackson JK,Chehroudi B,et al.An in vitro study of plasticized poly(lactic-co-glycolic acid) films as possible guided tissue regeneration membranes: material properties and drug release kinetics.J Biomed Mater Res A.2010; 95(3): 857-69. [31] Taba Jr M,Jin Q,Sugai JV,et al.Current concepts in periodontal bioengineering. Orthod Craniofac Res. 2005; 8(4):292. [32] Karring T. Regenerative periodontal therapy. J Int Acad Periodontol. 2000;2(4):101. [33] Kikuchi M, Koyama Y,Yamada T, et al. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly(l-lactide-co-glycolide-epsilon-caprolactone) composites. Biomaterials. 2004;25:5979. [34] Liao S, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.Biomaterials. 2005; 26(36):7564. [35] Liao S, Watari F, Zhu Y, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater. 2007;23(9):1120. [36] Milella E, Barra G, Ramires PA, et al.Poly(l-lactide)acid/ alginate composite membranes for guided tissue regeneration. J Biomed Mater Res.2001;57:248. [37] Murphy KG,Gunsolley JC.Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects.A systematic review. Ann Periodontol.2003;8(1):266. [38] Park YJ, Lee YM, Park SN,et al. Enhanced guided bone regeneration by controlled tetracycline release from poly(l-lactide) barrier membranes.J Biomed Mater Res.2000; 1(3):391. [39] Park JK, Yeom J, Oh EJ, et al. Guided bone regeneration by poly(lactic-co-glycolic acid)grafted hyaluronic acid bi-layer films for periodontal barrier applications. Acta Biomaterialia. 2009;5(9):3394. [40] Ripamonti U. Recapitulating development: a template for periodontal tissue engineering.Tissue Eng.2007;13(1):51. [41] Shin SY, Park HN, Kim KH, et al. Biologicalevaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol.2005;76:1778. [42] Sculean A, Nikolidakis D, Schwarz F.Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol.2008;35 (8 Suppl):106. [43] Bottino MC,Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomaterialia.2011;7(1):216. [44] Wang HL.Periodontal regeneration. J Periodontol.2005; 76(9): 1601. [45] Trombelli L.Which reconstructive procedures are effective for treating the periodontal intraosseous defect?Periodontology. 2000. 2005;37:88. [46] Fujihara K, Kotaki M, Ramakrishna S.Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers.Biomaterials.2005;26:4139. [47] Behring J, Junker R,Walboomers XF, et al.Toward guided tissue and bone regeneration: morphology,attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.Odontology. 2008; 96:1. [48] Gentile P, Chiono V, Tonda-Turo C, et al.Polymeric membranes for guided bone regeneration.Biotechnol J.2011; 6:1187. [49] Kasaj A, Reichert C, Gotz H, et al. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration.Head Face Med. 2008;4:22. [50] McClain PK,Schallhorn RG. Focus on furcation defects—guided tissue regeneration in combination with bone grafting. Periodontology.2000. 2000;22(1):190. [51] Milella E, Ramires PA, Brescia E, et al. Physicochemical, mechanical, and biological properties of commercial membranes for GTR. J Biomed Mater Res. 2001;58:427. [52] Needleman IG, Worthington HV, Giedrys-Leeper E, et al.Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev.2006;(2):CD001724. [53] Piattelli A, Scarano A, Russo P, et al. Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-resorbable membranes.Biomaterials.1996;17:791. [54] Retzepi M,Donos N. Guided bone regeneration: biological principle and therapeutic applications.Clin Oral Implants Res.2010;21(6):567.006:29. [55] Linde A, Alberius P, Dahlin C, et al. Osteopromotion:a soft-tissue exclusion principle using a membrane for bone healing and bone neogenesis. J Periodontol.1993;64:1116. [56] Magnusson I, Batich C, Collins BR.New attachment formation following controlled tissue regeneration using biodegradable membranes. J Periodontol.1988;59:1. [57] Polimeni G,Xiropaidis AV,Wikesjoe UME.Biology and principles of periodontal wound healing/regeneration. Periodontology 2000.2006;41:30. [58] Wikesjo UM, Sigurdsson TJ, Lee MB,et al.Dynamics of wound healing in periodontal regenerative therapy. J Calif Dent Assoc.1995;23:30. [59] Sih J,Bansal SS,Filipini S,et al.Characterization of nanochannel delivery membrane systems for the sustained release of resveratrol and atorvastatin: new perspectives on promoting heart health.Anal Bioanal Chem.2012.[Epub ahead of print] [60] 张祖菲,周建平,霍美蓉.壳聚糖微球给药系统[J].药学进展,2006, 30(6):261-266. [61] 王姹,徐燕.生长因子在牙周组织再生中的有效释放方式[J].国际口腔医学杂志,2012,39(2):265-268. [62] Wang X,Yucel T,Lu Q,et al.Silk Nanospheres and Microspheres from Silk/PVA Blend Filmsfor Drug Delivery. Biomaterials.2010;31(6):1025-1035. [63] 黄涓涓,谢俊,黄春玉,等.膜控型微丸的研究与应用进展[J].药学与临床研究,2011,19(1):42-45. [64] 陈红丽,陈汉,莫丽都尔,等.胶原-壳聚糖载硫酸长春新碱微球缓释药膜的研究[J].国际生物医学工程杂志,2006,29(4):193-194. [65] 唐涛,谢彤,齐宏旭,等.电纺羧甲基壳聚糖复合rhBMP-2 生长因子纤维膜的制备[J].中华老年口腔医学杂志,2010,8(4):243-246. [66] 季娟娟,丁仲鹃,杨雪莲.壳聚糖缓释膜的制备及性能研究[J].华西口腔医学杂志,2009,23(2):248-251. [67] 王振中,郝喜海,李菲,等.溶液流涎法制备PVA缓释膜工艺[J].塑料,2010,39(3):91-93. [68] 张筱英,莫明秀,梁德荣,等.复方土牛膝口炎膜处方优化及工艺研究[J].中国医院药学杂志,2009,29(13):1068-1071. [69] Thoma DS,Halg GA,Dard MM,et al.Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipig. Clin Oral Implants Res. 2009;20(1):7-16.. [70] Haimmerle CH,Jung RE,Yaman D,et al. Ridge augmentation by applying bioresorbable membranes and deproteinized bovine bone mineral: a report of twelve consecutive cases. Clin Oral Implants Res.2008;19(1):19-25. [71] Fiorellini JP,Kim DM,Nakajima Y,et al.Osseointegration of titanium implants following guided bone regeneration using expanded polytetrafluoroethylene membrane and various bone fillers.Int J Periodontics Restorative Dent.2007;27 (3): 287-294. [72] Dupont KM,Sharma K,Stevens HY,et al.Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A. 2010;107:3305-3310. [73] Helmy KY,Patel SA,Silverio K,et al.Stem cells and regenerative medicine: accomplishments to date and future promise.Therapeutic Del. 2010;1(5):693-705. [74] Shimode K,Iwasaki N,Majima T,et al.Local upregulation of stromal cell-derived factor-1 after ligament injuries enhances homing rate of bone marrow stromal cells in rats. Tissue Eng Part A.2009;15(8):2277-2784. [75] Fong EL,Chan CK,Goodman SB.Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32(2):395-409. [76] Lau TT,Wang DA.Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine.Expert Opin Biol Ther. 2011;11(2):189-197. [77] Sundelacruz S,Kaplan DL.Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine.Semin Cell Dev Biol.2009; 20(6): 646-655. [78] Dawson JI,Oreffo RO.Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering.Arch Biochem Biophys.2008;473(2):124-131. [79] Kitaori T,Ito H,Schwarz EM,et al.Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model.Arthritis Rheum. 2009;60(3):813-23. [80] Granero-Moltó F,Weis JA,Miga MI,et al.Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27(8):1887-1898. [81] Zhang Y,Shi B,Li C,et al.The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds.J Control Release. 2009; 136(3):172-178. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
[3] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[4] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
[5] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
[6] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
[7] | Zou Gang, Xu Zhi, Liu Ziming, Li Yuwan, Yang Jibin, Jin Ying, Zhang Jun, Ge Zhen, Liu Yi. Human acellular amniotic membrane scaffold promotes ligament differentiation of human amniotic mesenchymal stem cells modified by Scleraxis in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1037-1044. |
[8] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[9] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
[10] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
[11] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
[12] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
[13] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
[14] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
[15] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||