Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (21): 3407-3413.doi: 10.3969/j.issn.2095-4344.2017.21.021
Previous Articles Next Articles
Guo De-bin1, 2, Zhu Xiang-qing1, Pan Xing-hua1
Revised:
2017-02-13
Online:
2017-07-28
Published:
2017-08-02
Contact:
Pan Xing-hua, M.D., Chief physician, Stem Cell and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming 650032, Yunnan Province, China
About author:
Guo De-bin, Studying for master’s degree, Inspector, Stem Cell and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming 650032, Yunnan Province, China; the Third Military Medical University of PLA, Chongqing 400037, China
Supported by:
the National Science and Technology Support Program of China, No. 2014BI01B0; the Key Project of Kunming City, No. 2015-1-S-00973; the Special Project of Strategic Emerging Industries in Yunnan Province, No. 2013DA004; the Special Project of Experimental Animals in PLA, No. SYDW [2014]003
CLC Number:
Guo De-bin, Zhu Xiang-qing, Pan Xing-hua. Underlying mechanism of bone marrow mesenchymal stem cells in the repair of radiation-induced hematopoietic injury[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(21): 3407-3413.
2.1 电离辐射损伤造血干细胞 电离辐射主要通过削减造血干细胞数量,减弱其自我更新能力,最终造成骨髓急性或持久性抑制,从而影响造血。 2.1.1 促进细胞凋亡 ①Bcl-2家族蛋白在电离辐射促进造血干细胞凋亡中起重要调控作用。Bcl-2家族的成员主要包括2类,通常以二聚体活化形式发挥作用,一类是抗凋亡的Bcl-2、Bcl-xl、Bcl-w、Mcl-1等,一类是促凋亡的Bax、Bak、Bid、Bim等。Bcl-2家族蛋白对细胞凋亡的调控取决于辐射剂量的大小和活化家族成员间的相互作用。当高剂量辐射时,造血干细胞中抗凋亡蛋白Bcl-2、Bcl-xl表达下调,促凋亡蛋白Bax表达上调,使得造血干细胞抗凋亡能力下降[10];②p16作为细胞周期的基本基因,可阻止辐射损伤导致的DNA修复,这可能与p53依赖途径有关。当低剂量辐射时,造血干细胞上调表达p16,使细胞周期停滞在G1期,此时DNA微小损伤得以修复;当高剂量辐射时,p16稳定野生型p53蛋白的表达,野生型p53又通过激活Bax的表达,并将胞质内的Bax转移至线粒体外膜上,促使线粒体促凋亡蛋白的释放,同时下调Bcl-2的表达,促进细胞的凋亡。 2.1.2 细胞分化失衡 电离辐射能激活造血干细胞中粒细胞集落刺激因子/Stat3/BAT的分化位点,导致造血干细胞偏分化成髓系,而红系和淋巴系克隆急剧下降,这可能会加重造血干细胞DNA损伤,同时增加白血病的发病风险。造血干细胞分化成不同特定细胞往往被认为是随机的,但有研究提示在髓系细胞的分化过程中,有两类蛋白产生了重要作用,一类是胞内的转录因子,确定其分化“身份”;另一类是胞外的细胞因子,根据其“身份”不同,匹配利于细胞分化的内环境,而电离辐射也可能通过破坏两者的平衡,导致细胞偏分化[11]。 2.1.3 加速细胞衰老 电离辐射选择性诱导造血干细胞衰老。研究表明电离辐射能降低小鼠造血干细胞克隆能力,使细胞不可逆地停留在G1期,同时高表达细胞周期抑制因子p16、p21、ARF及衰老相关的SA-β-gal,但从辐射小鼠骨髓中分离的造血祖细胞功能与形态同正常对照组无差异[12]。 2.1.4 氧化损伤 造血干细胞能通过NADPH氧化酶产生活性氧(ROS),而电离辐射能加速造血干细胞活性氧的产生。NADPH氧化酶目前已知有5种亚型,其中NADPH氧化酶4在造血干细胞电离辐射后上调表达,其他亚型无明显变化。①活性氧升高后,激活p38MAPK通路,即外界刺激磷酸化PAK和MLK,基因MKK3/6过表达,诱导p38基因转录,p38又通过调控GATA-3影响造血干细胞自我更新,但这个过程不影响造血干细胞周期[13-14];②活性氧升高后,处于相对的静止期的造血干细胞比例下降(相对静止期的造血干细胞具有保护骨髓细胞免受外界有害物质干扰,维持骨髓微环境稳态的作用),而处于S期、G2期和M期的造血干细胞比例变化不明显,此时活性氧通过激活P38MAPK-P16INK4a途径干预造血干细胞功能;③活性氧另外可以激活PI3K-Akt-mTOR通路损伤造血干细胞,此时该通路的下游基因Foxo,被选择性失活,同时促进更多的活性氧产生,形成一个负向调节环路,持续损害造血干细胞[15]。另外发现电离辐射能激活p16-Rb通路,通过上调表达p16,缩短造血干细胞寿命,但在长期骨髓抑制与造血干细胞的衰老中此作用并不明显[16]。 2.1.5 端粒酶活性的调节 端粒是控制细胞分裂的重要序列,端粒功能的发挥依赖其适宜的长度与完整的结构,端粒随着细胞的增殖分裂而不断缩短,而端粒的缩短或结构的异常会引起染色体异常,损害细胞遗传信息的完整性,但端粒酶能有效遏制端粒的缩短。电离辐射对端粒酶的调节取决于细胞的放射敏感性和辐射剂量的高低。研究显示,当造血干细胞受到低剂量电离辐射时,可能通过增加与端粒酶转录/合成相关成分,或促进端粒酶活性上调因子(如Myc、Tnks等)的转录来提高端粒酶的活性,导致细胞的生长活跃;当造血干细胞受到高剂量电离辐射时,端粒酶的活性受到抑制,这可能与hEst2基因片段表达受抑制有关。另外电离辐射可致端粒酶反转录酶TERC或TERT突变,使端粒缩短,造成造血干细胞移植力下降,但对造血干细胞寿命影响不大[17]。 2.2 电离辐射诱发炎症与免疫反应 多基因组研究表明,电离辐射能触发系统免疫应答与炎症反应,且不同辐射剂量对不同类型的细胞产生影响不同[18]。低剂量辐射不导致损伤,甚至可以增强生物反应性,包括免疫系统、生理功能、酶修复,DNA和蛋白质的损伤修复。在这里主要进行高剂量辐射(即辐射损伤)的分析。 2.2.1 氧化/抗氧化失衡 骨髓的高反应性在暴露于电离辐射伊始即被刺激,这可能是骨髓对组织损伤应答的一种内在反应[19]。化学毒物是电离辐射造成组织间接损害的媒介,其中以水的辐射电解最为常见,即水电离成H+和OH+进入细胞。研究显示进入细胞的H+和OH+更多转化为H2O2,细胞中的H2O2增多会抑制酪氨酸蛋白磷酸酶,而蛋白酪氨酸磷酸酶是抑制淋巴细胞活化的重要因素。H2O2在淋巴细胞活化中扮演重要的角色,它作为第二信使在抗原受体水平放大调节淋巴细胞活化信号。活性氧的产生不仅激活淋巴细胞,同时也刺激骨髓细胞的增殖(多为非造血细胞),这一过程的激活依赖于凝血因子与蛋白酶的一系列级联反应,其中最重要的是激肽释放酶-激肽系统(KKS)[20]。有研究进一步证实了这个结论,他们给小鼠进行10 Gy全身辐照后发现,组织激肽释放酶1相关肽酶,半胱氨酸蛋白酶抑制剂胱抑素C和氧化组氨酸表达增加,而蛋白酶抑制剂包括激肽释放酶蛋白和白蛋白表达降低,同时发现在炎症过程中细胞内信号转导蛋白表达量增加了4倍[21]。另外,随着研究深入,与辐射导致炎症反应相关的基因如ICAM-1、MHCI/II、IFNG、LFA-3 (CD58)、B7-1 (CD80)、CTLA-4、HMGB1、HSP70、MICB、ULBP1-2-3、FASLG、FOXO3a的重要作用也逐渐被认识[22-23]。 2.2.2 启动细胞凋亡通路 电离辐射通过激活特定细胞凋亡通路导致炎症/免疫失衡[24]。①Fas/FasL作为凋亡诱导家族的重要成员,在电离辐射导致的细胞凋亡中发挥重要作用,Fas与活化细胞交联主要通过酪氨酸与丝/苏氨酸磷酸化来介导凋亡。凋亡通路的激活干扰细胞周期,影响细胞生长与活性,且影响程度正比于细胞自身增殖率。电离辐射的作用位点是细胞分裂的G1/S、S和G2/M期,不影响处于静止期(G0)或分裂较少的细胞[25];②电离辐射增加HMGB1、HSP70的表达水平,二者作为坏死细胞发出的危险信号激活了抗原递呈一系列过程。HMGB1与受体TLR4结合活化树突状细胞,HSP70可与细胞表面受体如CD14、CD40、Lox1、TLR2、TLR4、CD91等结合活化单核细胞、巨噬细胞和树突状细胞[26];③电离辐射对于淋巴细胞的影响取决于抗原递呈细胞、淋巴细胞与细胞因子三者之间的交互作用。CTLA-4与PD-1是重要的T细胞活化分子,CTLA-4多表达于淋巴器官,PD-1多表达于外周组织,PD-1与其配体PD-L1两者结合后,利用包内的ITSM基序,抑制CTL细胞功能,参与外周免疫耐受维持。CD28与CTLA-4通过竞争结合表达于抗原递呈细胞表面的B7(CD80/86)来调节T细胞。有研究表明电离辐射可抑制CD28的下调和CTLA-4的上调表达[27]。 2.3 BMSCs抗电离辐射损伤 BMSCs暴露在电离辐射下,会发生细胞的凋亡、衰老、自噬,其中以衰老和自噬为主。①研究发现BMSCs在20 Gy全身照射后,高表达抗凋亡蛋白Bcl-2和Bcl-XL,低水平表达促凋亡蛋白Puma,仅小部分细胞产生应激而发生凋亡[28]。当电离辐射增加到60 Gy时,BMSCs上调表达细胞周期蛋白依赖激酶抑制子(p16-INK4A),增强β-半乳糖苷酶活性,此时BMSCs衰老的细胞数量明显增多,而凋亡的细胞数量则变化不明显,衰老BMSCs的成骨和成脂分化潜能均降低[29],其中视网膜母细胞瘤蛋白、p53可能在BMSCs衰老中发挥了关键作用[30]。此外,有证据表明辐射致衰老的BMSCs细胞骨架受蛋白激酶CK2的调节[31];②电离辐射增强了BMSCs的自噬作用,而自噬也是BMSCs自我保护,抵抗辐射损伤的一种手段。自噬作用降低了BMSCs细胞中由电离辐射刺激产生的活性氧量,维持细胞的分化潜能,保持细胞的干性,同时自噬还为细胞内细胞器构建提供原料,有利于细胞结构的再循环[32]。有研究显示电离辐射中BMSCs的自噬与凋亡在分子信号调节机制上存在交织,即在某些条件下会相互协同或者拮抗,自噬可能作为凋亡的先行者,在受到刺激后首先开启“自救模式”,当超过自噬处理能力范围之外,则会发生不可逆的程序性死亡(即凋亡)。通过外界增强BMSCs的自噬能力后发现凋亡比例无明显变化,这也说明了BMSCs拮抗了自噬向凋亡的转化,提高了BMSCs的辐射耐受,所以提高BMSCs的自噬有利于其自身的保护[33-34]。 2.4 BMSCs保护造血干细胞 大量的动物实验显示BMSCs移植可显著提高骨髓细胞存活率,降低辐射诱导的造血细胞凋亡率,重建造血,同时BMSCs归巢并聚集至损伤部位。有研究显示在GFP标记的BMSCs在输入模型鼠后80 d仍能在骨髓细胞中检测得到[35]。BMSCs总的来说可能通过扮演以下3种角色对造血干细胞发挥作用,①组织特异性细胞:如BMSCs可能分化成造血干细胞、血管内皮细胞修复造血组织;②功能相关性细胞:如干细胞移植中,BMSCs作为骨髓微环境或者造血干细胞龛的重要组分,促进造血干细胞的归巢、再生与功能发挥;③调节性细胞:如BMSCs通过分泌各种细胞因子调节免疫与炎症反应,促进造血细胞的生长与归巢[36-37]。 2.4.1 BMSCs作为造血干细胞龛的组成部分 通常把造血干细胞聚集和相互作用的特定微环境称为造血干细胞龛,它分为很多类型。在这些龛内有特定程序与通路来调节造血干细胞自我更新、增殖和分化,但调节机制尚不清楚。其中有一种由VCAM-1+网状细胞、CXCL12网状细胞组成的造血干细胞龛(这些细胞大多由基质细胞,尤其是BMSCs分化而来),能吸附并锚定造血干细胞和造血祖细胞,通过分泌各种可溶性因子和细胞外基质,二者相互作用调控前两者分化。所以BMSCs也被当作造血干细胞龛的饲养层细胞,分泌造血功能相关因子如胎儿肝脏酪氨酸激酶3配体(FLT3-L)、SCF、IL-3和TPO等与造血干细胞相互作用启动造血[38]。BMSCs的这个特性也为体外研究造血细胞归巢与黏附提供了模型的可能性。 2.4.2 BMSCs/造血干细胞复合体形成 为了更有效造血,BMSCs与造血干细胞之间可形成特殊的连接复合体,使具有较高自我更新能力的造血干细胞更易黏附到BMSCs。通过比较人类造血干细胞与BMSCs基因表达谱(在二者聚集在一起后),发现两者都高表达一些细胞连接蛋白,包括钙黏蛋白11、N-钙黏蛋白、整合素α1(ITGA1)、整合素α5(ITGA5,CD49e)、整合素β1 (ITGB1,CD29)、VCAM1、神经细胞黏附分子1 (NCAM1)、血小板反应蛋白1,对于这些细胞黏附蛋白的重要性研究还有待深入[39]。 2.4.3 BMSCs旁分泌功能 Uccelli等[40]发现BMSCs输入机体后,分布到骨髓的间充质干细胞数量很有限。Walenda等[41]发现BMSCs联合SCF、TPO、FGF-1相比单独输入间充质干细胞显示较高的造血功能增强能力,明显促进细胞集落形成单位形成,快速改善造血功能。这些实验提示了BMSCs并非独立发挥作用改善造血,虽然机制不清楚,但肯定与BMSCs旁分泌作用于周边细胞,改善造血微环境的作用密不可分。不同来源的MSCs旁分泌的活性分子可能有交叉,也可有独立表达,就总的功能而言,这些分子都与造血干细胞和造血祖细胞的自我更新、归巢、基质黏附、增殖、分化等作用息息相关[42]。有数据显示与BMSCs相比,脐血源性间充质干细胞可合成、分泌更高水平的TPO、粒细胞-巨噬细胞集落刺激因子、SCF,促进CD34+细胞扩增,促进细胞集落形成单位克隆形成[43],是否脐血源性间充质干细胞比BMSCs更合适造血损伤后的移植治疗还有待进一步研究。De Toni等[44]在小鼠中证实了脂肪源性间充质干细胞相比BMSCs更能促进造血祖细胞的生成与分化,促进CD45+细胞扩增。这说明了适时挑选不同来源间充质干细胞有助于更高效、快速地恢复造血。另外,BMSCs作为造血干细胞的饲养层细胞,分泌细胞外基质蛋白,形成骨架,促进造血干细胞的归巢与分化;BMSCs分泌纤维粘连蛋白、层粘连蛋白、硫酸糖胺聚糖和多种蛋白多糖,促进造血祖细胞进一步分化,否则会造成无效造血或骨髓衰竭[45]。这说明BMSCs分泌的活性分子发挥了骨架支撑作用,维持造血干细胞龛的结构与功能。BMSCs同时受到活性分子的调控,即周围环境影响间充质干细胞的功能。当造血干/祖细胞大量增殖时,BMSCs高表达白细胞介素6、白细胞介素8、单核细胞趋化蛋白1、粒细胞集落、集落刺激因子、黑色素瘤生长刺激活性蛋白(GRO,CXCL1)、组织抑制金属蛋白酶1/2 [46]。 2.5 BMSCs调控免疫细胞 BMSCs具有低免疫原性,且拥有广泛的免疫调节特性,几乎涉及所有免疫细胞,BMSCs能通过细胞间的相互作用,分泌细胞因子,启动特殊信号通路来平衡免疫反应,避免发生错误激活淋巴细胞,在损伤修复中产生耐受或终止免疫反应等行为,维护了免疫稳态。同时BMSCs具有强大抗炎作用。 2.5.1 BMSCs体外调控免疫细胞 在体外,T细胞可被PHA、异种抗原、CD3、CD28抗体等刺激活化增殖,在与BMSCs共培养时,T细胞增殖整体受到抑制,Th1细胞因子分泌减少,Th2细胞因子分泌增加,仅CD4+CD25+Foxp3+T细胞被诱导增多,这可能与BMSCs分泌转化生长因子β、肝细胞生长因子、前列腺素E2、IDO、ILP、一氧化氮、HO、LIF、白细胞介素10、HLA-G、PDL-1、B7-H1及活化的补体等增加有关,且抑制T细胞增殖过程不需要抗原提呈细胞APC的辅助。BMSCs抑制细胞毒性T淋巴细胞形成,但不能清除已存在的细胞毒性T淋巴细胞和NK细胞诱导裂解的细胞[47]。B细胞可被Ig抗体或者可溶性CD40配体活化增殖,在与BMSCs共培养时,B细胞的增殖、分化与抗体生成都受到抑制,CXCR-4、CXCR-5和CCR7表达也下调,这可能与BMSCs分泌PGE-2相关。树突状细胞可被GM-CSF、白细胞介素4、肿瘤坏死因子α活化增殖,在与BMSCs共培养时,能抑制单核细胞或造血干细胞来源的树突状细胞分化、成熟,减弱其抗原递呈作用,抑制骨髓来源树突状细胞分泌肿瘤坏死因子α,抑制浆细胞来源的树突状细胞分泌白细胞介素10,这可能与BMSCs分泌白细胞介素6、M-CSF、前列腺素E2、白细胞介素10上调有关,而调节性DC数量增多,导致免疫应答下调,介导外周免疫耐受[48-49],现有的数据很大程度上限于体外研究,仍然需要体内生物学证据阐述证明。 2.5.2 BMSCs的免疫调节 BMSCs免疫调节的机制仍不清楚,但可能与以下机制有关:①调节性T细胞是免疫抑制的关键因素:有数据显示在BMSCs混合淋巴细胞培养或者BMSCs混合外周血单个核细胞(白细胞介素2刺激)培养中,CD4+CD25+T细胞显著增多[50];②细胞与细胞间的相互作用:BMSCs细胞表面不能持续表达的免疫调节分子,且分子种类也是有限的,而且其表达什么类型分子也与周围环境息息相关。在BMSCs移植入机体后,分化为骨、软骨或脂肪组织后仅能低表达MHC-I类分子,此外,干扰素γ诱导HLA二类分子表达但仍没引起增生性反应[51]。有研究显示缺乏协同信号不是BMSCs诱导T细胞反应迟钝的原因,但BMSCs下调APC表面共刺激分子的表达可能对T细胞产生影响。另外,程序性细胞死亡PD1/PDL-1通路干预细胞间相互作用可能介导了间充质干细胞免疫抑制作用[52];③可溶性细胞因子作用:当把BMSCs和淋巴细胞分隔在不同transwell小室培养时,免疫抑制同样出现,说明BMSCs并不仅仅通过细胞间接触来作用淋巴细胞,研究发现一氧化氮、前列腺素E2、白细胞介素10、转化生长因子β1、肝细胞生长因子、吲哚胺2,3-doxygenase、甲状旁腺激素、骨形态发生蛋白和干扰素γ可能在抑制过程中发挥了重要作用[53-54]。 2.6 BMSCs对电离辐射诱导DNA损伤的修复 DNA损伤修复依赖于细胞修复能力和细胞周期所处阶段。间充质干细胞能够快速、高效地识别辐射引起的DNA损伤(24 h内),通过启动同源重组HR、非同源性末端接合修复途径NHEJ进行DNA双链断裂的迅速修复。丝氨酸/苏氨酸激酶ATM能招募和激活多个下游DNA损伤检测和修复蛋白质,是启动HR修复通路的重要因素。ATM即使在大剂量辐射(60 Gy全身辐照)后表达都保持相对稳定,但研究发现BMSCs中无论何种剂量的电离辐射均会增加ATM自动磷酸化及活化,同时p53、Chk2、RPA这些ATM依赖性的调节蛋白在间充质干细胞中高表达,这也增加了BMSCs的放射敏感性[55]。除ATM外,DNA依赖蛋白激酶催化亚单位在损伤修复中也发挥了重要作用。磷酸化组蛋白H2AX(γH2AX)的表达水平通常作为BMSCs辐射后双链断裂修复能力的指标。当BMSCs暴露于电离辐射后,NHEJ通路被强烈激活,NHEJ通路受到DNA PKcs的化学抑制,导致初始的γH2AX较低,提示未修复的双链断裂比例较高,该通路虽然快速但出错率较高[56]。"
[1] Havranek O,Spacek M,Hubacek P,et al.No association between the TP53, codon 72 polymorphism and risk or prognosis of Hodgkin and non-Hodgkin lymphoma. Leuk Res.2011;35(8):1117-1179.[2] Nagpal N,Ahmad HM,Molparia B,et al.MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013; 34(8):1889-1899.[3] Chow A,Lucas D,Hidalgo A,et al.Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche.J Exp Med.2011;(208):261-271.[4] Dickhut A,Schwerdtfeger RL,Ritter M,et al.Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue.Ann Hematol.2005;84(11):722-727.[5] Anthony BA.Regulation of hematopoietic stem cells by bone marrow stromal cells.Trends Immunol.2014;35(1):32-37.[6] Shi C,Lv T,Xiang Z,et al.Role of Wnt/β-catenin signaling in epithelial differentiation of lung resident mesenchymal stem cells.Journal of Cellular Biochemistry, 2014;116(8):1532-1539.[7] Nicolay NH,Liang Y,Lopez Perez R,et al.Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 2015;6(4):2076-2087.[8] Nicolay NH,Sommer E,Perez RL,et al.Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation.Strahlenther Onkol. 2014;190(11): 1037-1045.[9] NNicolay NH,Lopez Perez R,Saffrich R,et al.Radio-resistant mesenchymal stem cells-mechanisms of resistance and potential implications for the clinic.Oncotarget. 2015;6(23): 19366-19380.[10] Shao L,Sun Y,Zhang Z,et al.Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.Blood.2010;15(23): 4707-4714.[11] WangJ,SunQ,MoritaY,etal.A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage.Cell.2012;148(5):1001-1014.[12] Luo Y,Li L,Zou P,et al.Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation.2014;97(11):20-29.[13] Li H,Wang Y,Pazhanisamy SK,et al.Mn(III) meso-tetrakis-( N -ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression.Free Rad Biol Med.2011;51(1):30-37.[14] Porto ML,Rodrigues BP,Menezes TN,et al.Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice.J Biomed Sci.2015;22(1):1-13.[15] Gómez Puerto MC, Verhagen LP, Braat AK, et al. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016 ;12(10): 1804-1816.[16] Wang L,Xiao H,Xing Z,et al.The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation.J Hematol Oncol.2014;7(1):1-10.[17] Shao L,Luo Y,Zhou D.Hematopoietic stem cell injury induced by ionizing radiation.Antioxid Redox Signal. 2014;20(9): 1447-1462.[18] Greca ML,Grasso G,Antonelli G,et al.Neoadjuvant therapy for locally advanced melanoma: new strategies with targeted therapies.Onco Targets Ther.2013;7(2):1115-1121.[19] Chun SH, Park GY, Han YK, et al.Effect of low dose radiation on differentiation of bone marrow cells into dendritic cells. Dose Response. 2012 ;11(3):374-384.[20] Diazmuñoz MD,Bell SE,Fairfax K,et al.The RNA-binding protein HuR is essential for the B cell antibody response.Nat Immunol.2015;16(4):415-425.[21] Sadi B,Li C,Ko R,et al.A study on the effect of the internal exposure to 210Po on the excretion of urinary proteins in rats.Radiat Environ Biophys. 2016;55(2):161-169 .[22] Blank CU.The perspective of immunotherapy: new molecules and new mechanisms of action in immune modulation.Curr Opin Oncol.2014;26(2):204-214.[23] Imamura M,Shigematsu A.Allogeneic hematopoietic stem cell transplantation in adult acute lymphoblastic leukemia: potential benefit of medium-dose etoposide conditioning. ExpHematol Oncol. 2015;4(1):1-15.[24] Modiano JF,Lindborg BA,Mcelmurry RT,et al.Mesenchymal stromal cells inhibit murine syngeneic anti-tumor immune responses by attenuating inflammation and reorganizing the tumor microenvironment.Cancer Immunol Immunother. 2015;64(11):1449-1460.[25] Ishida T,Ishida M,Tashiro S,et al.Role of DNA damage in cardiovascular disease.Circ J.2014;78(1):42-50.[26] Pasi F,Paolini A,Nano R,et al.Effects of single or combined treatments with radiation and chemotherapy on survival and danger signals expression in glioblastoma cell lines.Biomed Res Int.2014;2014(3):1327-1338.[27] Schweizer MT,Drake CG.Immunotherapy for prostate cancer: recent developments and future challenges.Cancer Metastasis Rev. 2014 ;33(2-3):641-655.[28] Nicolay NH,Liang Y,Lopez PR,et al.Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 2014; 6(4):2076-2087.[29] Fekete N,Erle A,Amann EM,et al.Effect of high-dose irradiation on human bone-marrow-derived mesenchymal stromal cells.Tissue Eng Part C Methods.2015;21(2): 112-122.[30] Wright LE,Buijs JT,Kim H,et al.Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Mode.J Bone Miner Res. 2015;30(7):1268-1279.[31] Nicolay NH,Perez RL,Rühle A,et al.Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin.Sci Rep.2016;6:20035. [32] Molaei S,Roudkenar MH,Amiri F,et al.Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Res. 2015;50(2):80-86.[33] Wu J,Niu J,Li X,et al. Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2. Cellular Physiology & Biochemistry International J Exp Cell PhysiolBiochem Pharmacol.2014;33(5):1467-1474.[34] Khodadi E,Shahrabi S,Shahjahani M,et al.Role of stem cell factor in the placental niche.Cell Tissue Res.2016; 366(3): 523-531.[35] Hu KX,Sun QY,Guo M,et al.The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury.Br J Radiol.2010;83(985):52-58.[36] Psaltis PJ,Zannettino A CW,Worthley SG,et al.Concise Review: Mesenchymal Stromal Cells: Potential for Cardiovascular Repair.Stem Cells.2008;26(9):2201-2210.[37] Aronin CEP,Tuan RS.Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells.Birth Defects Res C Embryo Today.2010;90(1):67-74.[38] He N,Zhang L,Cui J,et al.Bone marrow vascular niche: home for hematopoietic stem cells.BoneMarrow Res.2014; 2014(1-2):128436-128436.[39] Zhang YJ,Yang YX,Hu MY,et al.Importance of CD44 on umbilical cord mesenchymal stem cells for expansion of hematopoietic cells.Cellular and molecular biology (Noisy-le-Grand, France).2015;61(2):18-25. [40] Uccelli A,Moretta L,Pistoia V.Mesenchymal stem cells in health and disease.Nat Rev Immunol.2008;8(9):726-736.[41] Walenda T,Bokermann G,Ventura Ferreira MS,et al. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells.ExpHematol.2011;39(6):617-628.[42] Fajardo-Orduña GR,Mayani H,Montesinos JJ.Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.Arch MedRes.2015; 46(8):589-596.[43] Zhang C,Chen XH,Zhang X,et al.Human umbilical cord blood-derived stromal cells: a new resource in hematopoietic reconstitution in mouse haploidentical transplantation. Transplant Proc.2010;42(9):3739-3744.[44] De Toni F,Poglio S,Youcef AB,et al.Human adipose-derived stromal cells efficiently support hematopoiesis in vitro and in vivo: a key step for therapeutic studies. Stem Cells Dev.2011; 20(12):2127-2138[45] Raicevic G,Najar M,Stamatopoulos B,et al.The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties.Cell Immunol. 2011;270(2):207-216. [46] Wolfgang Wagner M.D. Ph.D, Roderburg C, Wein F, et al. Molecular and Secretory Profiles of Human Mesenchymal Stromal Cells and Their Abilities to Maintain Primitive Hematopoietic Progenitors.Stem Cells.2007;25(10): 2638-2647.[47] Beyth S,Borovsky Z,Mevorach D,et al.Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness.Blood.2005;105(5):2214-2219.[48] Wen S,Dooner M,Cheng Y,et al.Mesenchymal stromal cell derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells.Leukemia. 2016;30(11): 2221-2231.[49] Blanco B,Herrero-Sánchez MC,Rodríguez-Serrano C,et al.Immunomodulatory effects of bone marrow versus adipose tissue derived mesenchymal stromal cells on NK cells: implications in the transplantation setting.Eur J Haematol. 2016;97(6):528-537. [50] Maccario R,Podestà M,Moretta A,et al.Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype.Haematologica. 2005; 90(4):516-525.[51] Li H,Guo ZK,Jiang XX,et al.Mesenchymal Stem Cells Alter Migratory Property of T and Dendritic Cells to Delay the Development of Murine Lethal Acute Graft-Versus-Host Disease.Stem Cells.2008;26(10):2531-2541.[52] Aggarwal S,Pittenger MF.Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.2005; 105(4):1815-1822.[53] Klyushnenkova E,Mosca JD,Zernetkina V,et al.T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression.J Biomed Sci. 2005;12(1):47-57.[54] Hou DL,Chen L, Liu B,et al.Identification of common gene networks responsive to radiotherapy in human cancer cells. Cancer Gene Ther.2014;32(21):542-548.[55] Worku M,Fersht N,Martindale C,et al.Sequential transformation of mesenchymal stem cells is associated with increased radiosensitivity and reduced DNA repair capacity. Radiat Res.2013;179(6):698-706.[56] Al-Nbaheen M, ishnubalaji R,Ali D,et al.Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential.Stem Cell Rev.2013;9(1):32-43. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[3] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[4] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[5] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
[6] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[7] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[8] | Fang Xiaolei, Leng Jun, Zhang Chen, Liu Huimin, Guo Wen. Systematic evaluation of different therapeutic effects of mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1085-1092. |
[9] | Guo Jia, Ding Qionghua, Liu Ze, Lü Siyi, Zhou Quancheng, Gao Yuhua, Bai Chunyu. Biological characteristics and immunoregulation of exosomes derived from mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1093-1101. |
[10] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[11] | Hou Jingying, Guo Tianzhu, Yu Menglei, Long Huibao, Wu Hao. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1005-1011. |
[12] | Zhou Ying, Zhang Huan, Liao Song, Hu Fanqi, Yi Jing, Liu Yubin, Jin Jide. Immunomodulatory effects of deferoxamine and interferon gamma on human dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1012-1019. |
[13] | Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026. |
[14] | Chen Xiaoxu, Luo Yaxin, Bi Haoran, Yang Kun. Preparation and application of acellular scaffold in tissue engineering and regenerative medicine [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 591-596. |
[15] | Kang Kunlong, Wang Xintao. Research hotspot of biological scaffold materials promoting osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 597-603. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||