Chinese Journal of Tissue Engineering Research ›› 2022, Vol. 26 ›› Issue (7): 1020-1026.doi: 10.12307/2022.138
Previous Articles Next Articles
Liang Xuezhen1, Yang Xi2, Li Jiacheng1, Luo Di3, Xu Bo1, Li Gang1, 3
Received:
2020-09-28
Revised:
2020-09-30
Accepted:
2020-10-30
Online:
2022-03-08
Published:
2021-10-29
Contact:
Li Gang, MD, Professor, Doctoral supervisor, First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
About author:
Liang Xuezhen, MD, Lecturer, First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
Supported by:
CLC Number:
Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 大鼠BMSCs的鉴定结果 大鼠BMSCs没有单一的特异性标记物,为了更全面地表征大鼠BMSCs,该研究采用倒置相差显微镜形态观察、流式细胞仪表型测定和三系分化等方法相结合对大鼠BMSCs的纯度和活性进行验证分析。 2.2.1 细胞形态学 从大鼠骨髓腔抽吸分离出的单个核细胞接种于培养瓶中,倒置显微镜下观察可见:原代细胞呈圆形、大小不一、胞体透亮、折光性好、悬浮于培养液中,见图2A,E;48 h大部分细胞开始贴壁,3 d后换液,细胞形态变化明显、增殖迅速,细胞伸出突起、呈梭形、纺锤形或多角形,突起之间相互联系,7-10 d细胞能铺满培养瓶70%以上,呈梭形,见图2B,F。传代细胞形态大多为圆形,接种数小时后即可贴壁,多数24 h后可完成贴壁,细胞状态重新恢复为梭形,5-7 d 细胞可再次铺满培养瓶70%以上,见图 2C,G。第3代细胞呈梭形,明显同向性改变,透光率好,生长均匀,见图2D,H。"
2.6 糖皮质激素和补肾活血胶囊含药血清诱导BMSCs分化后成骨、成脂及通路蛋白表达 糖皮质激素和补肾活血胶囊含药血清诱导3 d后,采用Western blot检测成骨相关因子(Runx2、Col1a1)、成脂相关因子(C/EBPα、PPARγ)及Hedgehog信号通路相关因子(SHH、Gli1、Gli2)的蛋白表达,见图8。 补肾活血胶囊含药血清干预后成骨因子Runx2蛋白表达较空白对照组明显上升,而单纯糖皮质激素干预后,成脂因子PPARγ和C/EBPα蛋白表达明显上升,补肾活血胶囊含药血清诱导后,成脂因子表达有所下降;与单纯糖皮质激素组比较,糖皮质激素和补肾活血胶囊含药血清共同干预组Hedgehog信号通路相关因子Shh和Gli1蛋白表达呈上升趋势,尤其是补肾活血胶囊含药血清中剂量组。 2.7 生物相容性 如图5A所示,补肾活血胶囊含药血清能提高大鼠BMSCs的增殖活性,无细胞毒性,具有良好的生物相容性。"
[1] COHEN-ROSENBLUM A, CUI Q. Osteonecrosis of the Femoral Head. Orthop Clin North Am. 2019;50(2):139-149. [2] YUE J, WAN F, ZHANG Q, et al. Effect of glucocorticoids on miRNA expression spectrum of rat femoral head microcirculation endothelial cells. Gene. 2018;651: 126-133. [3] WANG A, REN M, WANG J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene. 2018;671:103-109. [4] 李时斌,赖渝,周毅,等.激素性股骨头坏死发病机制及相关信号通路的靶点效应[J].中国组织工程研究,2021,25(6):935-941. [5] 王义生,李劲峰.股骨头坏死发病机制的研究现状与展望[J].中华实验外科杂志,2020,37(6):1001-1010. [6] LIU LH, ZHANG QY, SUN W, et al. Corticosteroid-induced Osteonecrosis of the Femoral Head: Detection, Diagnosis, and Treatment in Earlier Stages. Chin Med J (Engl). 2017;130(21):2601-2607. [7] KUBO T, UESHIMA K, SAITO M, et al. Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan. J Orthop Sci. 2016;21(4):407-413. [8] ZHAO DW, YU M, HU K, et al. Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey. Chin Med J (Engl). 2015;128(21):2843-2850. [9] HUANG Z, CHENG C, CAO B, et al. Icariin Protects against Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. Cell Physiol Biochem. 2018;47(2):694-706. [10] 迟博婧,刘光源,邢磊,等. Hedgehog信号通路调控骨形成及BMSCs成骨分化的研究进展[J].中国修复重建外科杂志,2016,30(12):1545-1550. [11] 吴修团,李文良,谢柳蓉,等. Hedgehog信号通路调节成骨细胞RANKL表达的研究进展[J].中国组织工程研究,2017,21(8):1294-1300. [12] MA L, FENG X, WANG K, et al. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics. FEBS Open Bio. 2019;10(2):211-220. [13] 梁学振,许波,李刚,等.淫羊藿治疗股骨头坏死的分子机制分析[J].中国实验方剂学杂志,2018,24(14):188-194. [14] 梁学振,骆帝,许波,等.补肾活血胶囊治疗股骨头坏死的分子机制研究[J].中华中医药杂志,2019,34(5):2188-2193. [15] 刘金豹,李刚.靶向性钻孔减压联合辛伐他汀、补肾活血汤治疗早期激素性股骨头坏死的临床观察[J].中国中医基础医学杂志,2017,23(12):1739-1741,1766. [16] CLARK JD, GEBHART GF, GONDER JC, et al. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38(1):41-48. [17] KILKENNY C, BROWNE WJ, CUTHILL IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage. 2012;20(4):256-260. [18] 吴沅皞,刘维,赵文甲.血清药理学方法对药理、药效学和新药研发的贡献[J].中国组织工程研究,2018,22(24):3914-3920. [19] 朱春胜,姜卓希,李佳静,等.中药血清谱效学研究现状概述[J].中草药,2020, 51(13):3569-3574. [20] 卢磊,刘晓丹,张培影.中药血清药理学及血清药物化学研究进展[J].中国中医急症,2018,27(1):178-181,188. [21] 李若飞,于春萍,兰丁璇,等.中药血清药理学实验方法与相关问题探讨[J].全科口腔医学电子杂志,2019,6(31):125,136. [22] FANG S, LI Y, CHEN P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther. 2018;13:45-55. [23] WANG SH, GOU GH, WU CC, et al. Increased COUP-TFII Expression Mediates the Differentiation Imbalance of Bone Marrow-Derived Mesenchymal Stem Cells in Femoral Head Osteonecrosis. Biomed Res Int. 2019;2019:9262430. [24] HAN L, WANG B, WANG R, et al. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther. 2019;10(1):377. [25] ZHOU D, CHEN YX, YIN JH, et al. Valproic acid prevents glucocorticoid‑induced osteonecrosis of the femoral head of rats. Int J Mol Med. 2018;41(6):3433-3447. [26] SHENG HH, ZHANG GG, CHEUNG WH, et al. Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development. J Orthop Surg Res. 2007;2:15. [27] ZHANG YL, YIN JH, DING H, et al. Vitamin K2 Prevents Glucocorticoid-induced Osteonecrosis of the Femoral Head in Rats. Int J Biol Sci. 2016;12(4):347-358. [28] SUN ZB, WANG JW, XIAO H, et al. Icariin may benefit the mesenchymal stem cells of patients with steroid-associated osteonecrosis by ABCB1-promoter demethylation: a preliminary study. Osteoporos Int. 2015;26(1):187-197. [29] SHUI C, SPELSBERG TC, RIGGS BL, et al. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res. 2003;18(2):213-221. [30] JAMES AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica (Cairo). 2013;2013:684736. [31] ZHUANG H, ZHANG X, ZHU C, et al. Molecular Mechanisms of PPAR-γ Governing MSC Osteogenic and Adipogenic Differentiation. Curr Stem Cell Res Ther. 2016; 11(3):255-264. [32] XU C, WANG J, ZHU T, et al. Cross-Talking Between PPAR and WNT Signaling and its Regulation in Mesenchymal Stem Cell Differentiation. Curr Stem Cell Res Ther. 2016;11(3):247-254. [33] KRSTIC J, TRIVANOVIC D, OBRADOVIC H, et al. Regulation of Mesenchymal Stem Cell Differentiation by Transforming Growth Factor Beta Superfamily. Curr Protein Pept Sci. 2018;19(12):1138-1154. [34] D’ALIMONTE I, LANNUTTI A, PIPINO C, et al. Wnt signaling behaves as a “master regulator” in the osteogenic and adipogenic commitment of human amniotic fluid mesenchymal stem cells. Stem Cell Rev Rep. 2013;9(5):642-654. [35] JAMES AW, PANG S, ASKARINAM A, et al. Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev. 2012;21(12):2170-2178. [36] ZHU Y, ZHANG X, GU R, et al. LAMA2 regulates the fate commitment of mesenchymal stem cells via hedgehog signaling. Stem Cell Res Ther. 2020;11(1):135. [37] FLEURY A, HOCH L, MARTINEZ MC, et al. Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway. Sci Rep. 2016;6: 23479. [38] JAMES AW, LEUCHT P, LEVI B, et al. Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng Part A. 2010;16(8):2605-2616. [39] MAJOR LG, HOLLE AW, YOUNG JL, et al. Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Appl Mater Interfaces. 2019;11(49):45520-45530. [40] KOMORI T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149(4):313-323. [41] WANG Y, PAN Z, CHEN F. Inhibition of PPARγ by bisphenol A diglycidyl ether ameliorates dexamethasone-induced osteoporosis in a mouse model. J Int Med Res. 2019;47(12):6268-6277. [42] VALENTI MT, GARBIN U, PASINI A, et al. Role of ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic patients. PLoS One. 2011;6(6):e20363. [43] KOMATSU N, KAJIYA M, MOTOIKE S, et al. Type I collagen deposition via osteoinduction ameliorates YAP/TAZ activity in 3D floating culture clumps of mesenchymal stem cell/extracellular matrix complexes. Stem Cell Res Ther. 2018; 9(1):342. [44] CHO YL, PARK JG, KANG HJ, et al. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol Res. 2019;139:325-336. |
[1] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1316-1322. |
[2] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1323-1329. |
[3] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[4] | Fan Yiming, Liu Fangyu, Zhang Hongyu, Li Shuai, Wang Yansong. Serial questions about endogenous neural stem cell response in the ependymal zone after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1137-1142. |
[5] | Wang Jifang, Bao Zhen, Qiao Yahong. miR-206 regulates EVI1 gene expression and cell biological behavior in stem cells of small cell lung cancer [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1027-1031. |
[6] | Liu Feng, Peng Yuhuan, Luo Liangping, Wu Benqing. Plant-derived basic fibroblast growth factor maintains the growth and differentiation of human embryonic stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1032-1037. |
[7] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[8] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[9] | Luo Xiaoling, Zhang Li, Yang Maohua, Xu Jie, Xu Xiaomei. Effect of naringenin on osteogenic differentiation of human periodontal ligament stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1051-1056. |
[10] | Wang Xinmin, Liu Fei, Xu Jie, Bai Yuxi, Lü Jian. Core decompression combined with dental pulp stem cells in the treatment of steroid-associated femoral head necrosis in rabbits [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1074-1079. |
[11] | Fang Xiaolei, Leng Jun, Zhang Chen, Liu Huimin, Guo Wen. Systematic evaluation of different therapeutic effects of mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1085-1092. |
[12] | Guo Jia, Ding Qionghua, Liu Ze, Lü Siyi, Zhou Quancheng, Gao Yuhua, Bai Chunyu. Biological characteristics and immunoregulation of exosomes derived from mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1093-1101. |
[13] | Huang Chenwei, Fei Yankang, Zhu Mengmei, Li Penghao, Yu Bing. Important role of glutathione in stemness and regulation of stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1119-1124. |
[14] | Hui Xiaoshan, Bai Jing, Zhou Siyuan, Wang Jie, Zhang Jinsheng, He Qingyong, Meng Peipei. Theoretical mechanism of traditional Chinese medicine theory on stem cell induced differentiation [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1125-1129. |
[15] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||