Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (52): 7885-7890.doi: 10.3969/j.issn.2095-4344.2016.52.019
Previous Articles Next Articles
Received:
2016-09-19
Online:
2016-12-16
Published:
2016-12-16
Contact:
Tu Yue, Professor, Doctoral supervisor, Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin 300162, China; Institute of Traumatic Brain Injury and Neurology, Affiliated Hospital of Logistics University of CAPF, Tianjin 300162, China; Affiliated Hospital of Logistics College of CAPF, Tianjin 300162, China
About author:
Lu Lei, Studying for master’s degree, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin 300162, ChinaChen Xu-yi, M.D., Associate chief physician, Master’s supervisor, Tianjin Key Laboratory of Neurological Trauma Repair, Tianjin 300162, China; Institute of Traumatic Brain Injury and Neurology, Affiliated Hospital of Logistics University of CAPF, Tianjin 300162, China; Affiliated Hospital of Logistics College of CAPF, Tianjin 300162, China
Lu Lei and Chen Xu-yi contributed equally to this work.
Supported by:
the Science and Technology Support Program of Tianjin, No. 14ZCZDGX00500
CLC Number:
Lu Lei, Chen Xu-yi, Li Yi-peng, Gang Lin, Tu Yue.
2.1 聚醚醚酮 聚醚醚酮是2013年经美国食品药品监督管理局(Food and Drug Administration,FDA)批准上市的骨移植材料,为一种人工合成的半水晶样多聚体。聚醚醚酮能抗高温,即使在260 ℃仍可保持性质不变,组织相容性好,化学性质稳定,弹性模量与皮质骨相近,即使受到碰撞也不会出现凹陷或变形,可以很好地保护开颅术后患者[3-5]。国外有学者将聚醚醚酮材料用于颌面部、颞眶部及前额部等部位颅骨缺损患者的手术,颅骨修复美学效果令人满意,脑功能也得到很好恢复[6-8]。国外有3家医院通过分析2006至2012年65例接受聚醚醚酮植入物的患者指出:定制的聚醚醚酮植入物对大面积颅骨缺损患者来说是最好的选择[9]。目前国内较少应用,有学者报道了聚醚醚酮颅骨修补的临床短期疗效,个体化定制的聚醚醚酮植入物吻合精度高,对称性好,可以很好地恢复患者的容貌,减轻患者的心理压力,术后能显著减少皮下积液和皮下感染率[10]。只是目前国内此材料尚未生产,需要国外进口,价格较贵。因不参与缺损部位的骨整合,定制的聚醚醚酮植入物有脱落的风险,并且聚醚醚酮材料的远期疗效未知,需要继续观察[11]。 2.2 钛合金 钛合金是目前临床广泛应用的颅骨修复材料,密度低,强度高,因此钛合金的比强度高,患者在置入钛合金后也不会感到重,并且其组织相容性好,稳定性好,致敏性低,对CT、MRI检查干扰较小[12],而这些特点也是钛合金材料被用来作为颅骨修补材料的原因。近年来随着技术的进步,采用计算机三维成型技术能个体化定制植入物。Williams等[13]对151例用个性化定制钛合金材料植入物做颅骨修补的患者进行观察,发现手术时间减少,术后皮下积液量少,远期感染率低。Matsuno等[14]证实钛合金材料的感染率是2.6%,在所有的修补材料中最低。刘桂彪等[15]观察198例钛网修复颅骨患者,发现术后无头皮下积血,降低了修补材料裸露、继发性感染等并发症。但钛合金材料也有如下缺点:有导电性、导热性,手术后头部对电磁波和外界温差较敏感,患者在使用手机或洗澡时会有不适感[16]。目前仍有众多学者研究钛合金,希望将来研究出理想的钛合金用于颅骨修补。 2.3 颅骨组织工程 长期置入时,非生物材料植入物可能发生偏移或脱落,需要二次手术,而组织工程技术参与颅骨重建成为目前研究的重要领域。颅骨组织工程是把有生物相容和生物降解性能的材料置入缺损部位,材料与细胞或生长因子相结合,以此来支持和引导骨生成,增强骨重建效果。 骨组织工程支架材料大体可以分为:①天然材料,包括壳聚糖、胶原蛋白、明胶、藻酸盐和丝素蛋白等;②人工合成高分子材料,包括聚乳酸、聚乙醇酸和聚乳酸-羟基乙酸共聚物等;③人工合成无机材料,包括羟基磷灰石和磷酸三钙等。天然材料来源广泛,组织相容性好,降解产物无毒,但其降解速度不易控制,力学强度不足;人工合成高分子材料有较好的力学强度,但其亲水性差,易导致无菌性炎症;人工合成无机材料组织相容性好,体内易降解,但其脆性较大。 理想的颅骨支架材料应该有良好的生物相容性及骨生成、骨诱导、骨传导的作用。另外,支架材料还要有一定的刚度和韧性,材料的降解产物不会引起炎症反应。而单一材料不能完全符合颅骨组织工程支架的要求,所以将几种材料混合或者材料与细胞因子相结合制成支架,成为目前研究颅骨组织工程支架的热点。将多种材料混合制成支架,可以弥补单一材料的不足。Przekora等[17]用壳聚糖、β-1,3-葡聚糖、生物陶瓷作为支架材料,测定3种不同的成骨细胞系(正常人胚胎成骨细胞、人骨肉瘤来源的成骨细胞和小鼠颅盖骨细胞MC3T3-E1)对支架的成骨特性。结果发现:新的支架能增加碱性磷酸酶的活性,促进细胞外基质合成,能诱导矿化结节的形成,表明这3种材料混合制成的支架在骨组织工程中有很好的应用前景。Villa等[18]用胶原-羟基磷灰石作为支架材料,用成骨细胞测定支架的细胞黏附率、生存力及在支架中的分布,用鼠颅骨缺损模型测定支架的成骨特性,结果表明3周后完全填充骨缺损。 某些细胞生长因子或小离子能提高材料的成骨能力。因此组织工程支架与生长因子或小离子相复合制成缓释支架是一种骨组织工程的新趋势。硅元素能促进骨成型和钙化,是矿化的使动因子[19-20]。Kim等[21]用硅元素和羟基磷灰石结合作为支架材料,人间充质干细胞测定羟基磷灰石支架的生物活性,兔颅骨缺损测定骨重建效率。结果表明硅元素的存在提高了细胞增殖、黏附,增强了细胞的成骨分化;兔颅骨缺损实验表明,第8周新骨形成有很大提高。重组人骨形态发生蛋白是一种重要的成骨调节因子,它可以促进成骨,但非受控和非靶向的超生理剂量缓释,会引起严重的不良反应。Quinlan等[22]采用冻干工艺将重组人骨形态发生蛋白2和胶原-羟基磷灰石制成多孔的复合支架,以长期低剂量缓释重组人骨形态发生蛋白2。结果表明低剂量缓释支架能增强碱性磷酸酶活性和钙生成,能增强大鼠颅骨缺损的愈合水平,而不引起骨生长异常和相邻骨吸收。Dadsetan等[23]将重组人骨形态发生蛋白2同磷酸钙相结合,用兔颅骨临界缺损评估支架的体内再生情况。组织学结果证实骨生长紧邻支架表面,表明这种涂层支架有好的骨整合性和骨传导性。这项研究中获得的结果表明,磷酸钙和涂层的重组人骨形态发生蛋白2之间有良好的的协同效应,并且可以为大的骨缺损的功能恢复提供一个有前景的平台。Thesleff等[24]把自体脂肪干细胞和β-磷酸三钙支架联合应用于4例大型颅骨缺损患者,结果发现没有出现相关的并发症,CT扫描骨化结果令人满意。虽然骨组织工程支架有很大的进展,出现很多新方法,但仍存在局限性,需要克服支架材料的选择、生长因子缓释及种子细胞的获取问题。 2.4 制造方法 2.4.1 其他方法 组织工程支架的孔结构(孔径,孔隙率,孔互连性)在组织再生中起关键的作用,并且许多文献已研究孔结构的具体参数。对组织再生来说,支架的多孔结构是必要的,因为其有利于细胞的黏附,迁移和增殖,以及营养物质,氧和废物的运输。已经明确大孔径能促进营养供应和废物清除,而小孔径能提供更多的表面积,以利于细胞黏附。 Murphy等[25]使用改性冻干技术制造孔径范围为85-325 μm的胶原-糖胺聚糖支架。结果表明,孔径为300 μm改善了成骨细胞的浸润和黏附。Harley等[26]的研究表明,使用不同冷冻温度制造不同孔径的CG支架,温度从-10至-40 ℃产生的孔径范围相应的从 151 μm减至96 μm。O’Brien等[27]的研究表明,增加孔径从90 μm至150 μm,可以降低成纤维细胞的移动性。同样,其他的研究表明,在给定的孔径范围,随着孔径增加,成骨细胞附着减少。Guo等[28]应用不同的强度脉冲超声波(0-0.11 MPa)制造不同孔隙率(36%- 55%)的藻酸盐支架,结果表明,支架暴露于0.085 MPa超声波(53%)的孔隙率,能提高细胞活力和Ⅱ型胶原表达。Zhang等[29]用冰粒制造的胶原支架,实验发现支架孔径150-200 μm为支架提供最佳环境,促进软骨细胞分化,可增加Ⅱ型胶原的表达及支架的机械性能。 孔互连性也是在支架来说也是应考虑的因素,因为它影响营养物质和氧气的运输。此外,一些研究表明,孔互连性能影响支架血管组织向内生长。然而,支架互联性的制造是具有挑战性的。研究表明,增加孔隙大小可能降低机械性能。理想的支架应考虑其结构和机械性能。对骨组织再生来说,这样的设计是很重要的,其中机械强度是愈合的一个重要方面。Melchels等[30]的研究评估了孔互连性对细胞行为的影响,在聚乳酸支架孔隙直径为126 μm的互连孔中,骨髓间充质干细胞在支架中均匀分布及高增殖。 采用溶液浇铸/离子洗出法、原位成型法、静电纺丝法、相分离/冻干法、气体成孔法等方法制备的组织工程支架,获得了比较满意的效果,但在孔径精确性、孔隙均匀性、空间结构复杂性、支架个性化等方面可控性差,不利于骨组织的生长。 2.4.2 3D打印技术 3D打印技术是一种快速成型技术,它是以计算机辅助设计(Computer Aided Design,CAD)模型的几何信息为基础,通过成型设备把材料逐层堆积得到三维实体。3D 打印技术可在很大程度上实现支架孔径的精确性、孔隙均匀性、空间结构复杂性、支架个性化等方面的可控性,克服传统制造方法的缺点,因此可能制备出更优良的骨组织工程支架。 3D打印技术能打印出与骨缺损部位精确吻合的植入体。打印出的个体化植入体有完全吻合患者缺损部位,减少手术时间,减少患者住院时间。国内有医生为23例进行下颌角截骨患者置入3D打印的假体,所有患者均一期愈合,没有感染、出血等并发症,术后3个月CT检查发现骨整合良好[31]。 3D打印技术能打印出可控结构的骨组织工程支架。对组织工程来说,支架的孔结构是非常重要的,支架的孔结构可能会影响细胞的附着和生长方向并诱导不同生物学行为。因此组织工程的支架应该具有适当的结构和机械性能,以支持细胞的黏附、增殖和分化。3D打印技术在打印骨组织工程支架时,能将材料制造有预定形式和结构的支架,可以控制孔隙率和微孔的大小,实现孔隙之间完全贯通及孔隙梯度结构的成型,因而,可以制造出骨骼内部的微仿生结构[32-34]。孔隙支持细胞穿过和代谢物流通,并为种植细胞提供优良的微环境,以利于其的黏附、增殖及分化[35-37]。 打印复合材料的骨组织工程支架。Chang等[38]利用激光烧结技术在陶瓷材料中掺入碳酸钙粉末制作复合支架,结果表明该支架有良好的机械性能及生物相容性。国内学者通过3D打印技术制备了锶-生物玻璃支架,采用该支架修复大鼠颅骨缺损,支架的成骨和血管化能力显著提高[39]。3D打印制备的锶-磷酸镁支架,提高了支架的力学强度及体外降解性[40]。 打印材料与生长因子复合的骨组织工程支架。Wang等[41]用3D打印技术制备羟基磷灰石和重组人骨形态发生蛋白2复合骨支架,重组人骨形态发生蛋白2可持续释放21 d,诱导骨髓间充质干细胞成骨分化。体内实验表明该支架有良好的骨重建能力。国内学者用3D打印技术制备聚乳酸-羟基乙酸共聚物/羟基磷灰石和重组人骨形态发生蛋白2复合的骨支架,该支架有良好的机械性能和生物相容性[42]。 3D打印技术作为一种新的方法在颅骨修补方面与传统方法相比能精确地匹配患者的缺损部位;应用其制造骨组织工程支架,可以通过特定程序控制支架的三维立体结构,增强支架的骨诱导性、骨传导性、骨再生,更适合种子细胞黏附、增殖、分化,以诱导成骨修复缺损,具有重大的应用价值。但对打印材料要求高,需要打印时材料立即成型。"
[1]Dujovng M,Femandez P,Alperin N,et al. Postaranioplasty cerebrospinal fluid hydrodynamic changes: magnetic resonance imaging quantitative analysis.Neurol Res. 1997;19(3):311-316.[2]Shah AM,Jung H,Skirboll S.Materials used in cranioplasty: a history and analysis.Neurosurgical Focus.2014;36(4):E19.[3]Lethaus B,Safi Y,ter Laak-Poort M,et al.Cranioplasty with customized titanium and PEEK implants in a mechanical stress model.Neurotrauma. 2012;29:1077-1083.[4]Wang H, Xu M,Zhang W,et al.Mechanical and biological characterisics of diamond-like carbon coated poly-aryl-ether-ether-ketone.Biomaterials.2010; 31(32): 8181-8187.[5]El Halabi F,Rodriguez JF,Rebolledo L,et al.Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants.Mech Behav Biomed Mater.2011;4(8):1819-1832.[6]Kim MM,Boahene KD,Byren PJ.Use of customized polyether-ether-ketone (PEEK) implants in the reconstruction of complex maxillofacial defects.Arch Facial Plast Surg.2009;11(1):53-57.[7]Camarini ET,Tomeh JK,Dias RR,et al.Reconstruction of frontal bone using specific implant polyether-ether- ketone.Craniofac Surg. 2011;22(6):2205-2207.[8]Marbacher S,Andereggen L,Fandino J,et al.Combined bone and sofe-tissue augmentation surgery in tempororbital contour reconstruction.Craniofac Surg. 2011; 22(1):266-268.[9]Rosenthal G,Ng I,Moscovici S,et al. Polyetheretherketone implants for the repair of large cranial defects: a 3 center experience.Neurosurgery. 2014;75(5):523-529. [10]王国良,公方知,刘金龙,等.聚醚醚酮在颅骨缺损个体化重建手术中的应用[J].中国微侵袭神经外科杂志, 2013, 18(10):456-458.[11]Thien A,King NK,Ang BT,et al.Comparison of Polyetheretherketone and Titanium Cranioplasty after Decompressive Craniectomy.World Neurosurgery. 2014; 83(2):176-180.[12]Aydin S,Kucukyuruk B,Abuzayed B,et al.Cranioplasty: review of materials and techniques.Neurosci Rural Pract. 2011;2:162-167.[13]Williams LR,Fan KF,Bentley RP.Custom-made titanium cranioplasty: early and late complications of 151 cranioplasties and review of the literature.Int JOral Maxillofac Surg.2015;44(5):599-608.[14]Matsuno A,Tanaka H,Iwamuro H,et al.Analyses of the factors influencing bone graft infection after delayed cranioplasty.Acta Neurochir (Wien).2006;148:535-540.[15]刘桂彪,秦坤明,黄河清,等.数字化钛网颅骨成形198例分析[J].中国组织工程研究, 2012,16(4):757-760.[16]Cabraja M,Klein M,Lehmann T.Long-term results following titanium cranioplasty of large skull defects. Neurosurgical Focus.2009;26(6):E10.[17]Przekora A,Ginalska G. Enhanced differentiation of ostblastic cells on novel chitosan/β-1, 3-glucan/bioceramic scaffolds for bone.Biomed Mater. 2015;13(1):015009.[18]Villa MM,Wang L,Huang J,et al.Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells.J Biomed Mater Res B Appl Biomater. 2015;103(2): 243-253. [19]Balas F,Pérez Pariente J,Vallet Regí MIn vitro bioactivity of silicon-substituted hydroxyapatites.J Biomed Mater Res A.2003;66(2):364-375. [20]BohnerM.Silicon-substituted calcium phosphates - a critical view. Biomate-rials.2009;30(32):6403-6406.[21]Kim BS,Yang SS,Yoon JH,et al.Enhanced bone regeneration by silicon substi-tuted hydroxyapatite derived from cuttlefish bone.Clin Oral Impants Res. 2015.doi: 10.1111/clr.12613. [22]Quinlan E, Thompson EM, Matsiko A. Long-term controlled delery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration.J Control Release.2015;207:112-119.[23]Dadsetan M,Guda T,Runge MB,et al.Effect of calcium phosphate coating and rhBMP-2 on bone re-generation in rabbit calvaria using poly (propylene fumarate) scaffolds. Acta Biomater.2015;18:9-20.[24]Thesleff T,Lehtimaki K,Niskakangas T,et al.Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction.Neurosurgery.2011; 68(6):1535-1540.[25]Murphy CM,Haugh MG,O’Brien FJ.The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineer-ing.Biomaterials. 2010;31: 461-466.[26]Harley BA,Kim HD,Zaman MH,et al.Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions.Biophys J.2008; 95: 4013-4024.[27]O’Brien FJ,Harley B,Yannas IV,et al.The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials.2005;26:433-441.[28]Guo G,Lu L,Ji H,et al.Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability. Ultrason-ics.2015;58:43-52.[29]Zhang Q,Lu H,Kawazoe N,et al.Pore size effect of collagen scaffolds on cartilage regeneration.Acta Biomater.2014;10:2005-2013.[30]Melchels FP,Barradas A,Van Blitterswijk CA,et al.Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.Acta Biomater. 2010; 6:4208-4217.[31]Shen C,Zhang Y,Li Q,et al.Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Zhong guo Xiu Fu Chong Jian Wai Ke Za Zhi.2014;28(3):300-303. [32]Roth EA,Xu T,Das M,et al.Inkjet printing for high-throughput cell patterning. Biomate-rials. 2004;25: 3707-3715.[33]Seol YJ,Kang HW,Lee SJ,et al.Bioprinting technology and its applications.Eur J Cardio-Thoracic Surg. 2014; 46(3):342-348.[34]Wu C,Luo Y,Cuniberti G,et al.Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability.Acta Biomaterialia.2011; 7(6):2644-2650.[35]Murphy SV,Atala A.3D bioprinting of tissues and organs.Nat Biotechnol.2014; 32:773-785.[36]Ferlin KM,Prendergast ME,Miller ML,et al.Influence of 3D printed porous architecture on mes-enchymal stem cell enrichment and differentiation.Acta Biomater. 2016; 32:161-169.[37]Inzana JA,Olvera D,Fuller SM,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.Biomaterials. 2014;35(13): 4026-4034.[38]Chang CH,Lin CY,Liu FH,et al.3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.PLoS One.2015;10(11):e0143713.[39]Zhao S,Zhang J, Zhu M,et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects.Acta Biomater.2015;12: 270-280.[40]Meininger S,Mandal S,Kumar A,et al.Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.Acta Biomater.2016;31:401-411.[41]Wang H,Wu G,Zhang J,et al.Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold. Colloids Surf B Biointerfaces. 2016;141: 491-498.[42]臧晓龙,孙健,李亚莉,等.3D生物打印构建聚乳酸羟基乙酸/纳米羟基磷灰石支架骨形态发生蛋白2缓释复合体的实验研究[J].中国组织工程研究, 2016,20(16):2405- 2411. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Li Xingping, Xiao Dongqin, Zhao Qiao, Chen Shuo, Bai Yiguang, Liu Kang, Feng Gang, Duan Ke. Preparation and properties of copper-loaded antibacterial functional film on titanium surface [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 553-557. |
[5] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[6] | Shi Xiaoxiu, Mao Shilong, Liu Yang, Ma Xingshuang, Luo Yanfeng. Comparison of tantalum and titanium (alloy) as orthopedic materials: physical and chemical indexes, antibacterial and osteogenic ability [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 593-599. |
[7] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[8] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[9] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[10] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[11] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[12] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[13] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[14] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[15] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||