Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (17): 2783-2788.doi: 10.3969/j.issn.2095-4344.2017.17.025
Wang Bing-chen1, 2, Jiang Ming1, 2
Revised:
2017-03-25
Online:
2017-06-18
Published:
2017-06-29
Contact:
Jiang Ming, Chief physician, Professor, Doctoral supervisor, Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Xinjiang Research Institute of Hematology, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
About author:
Wang Bing-chen, Studying for master’s degree, Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China; Xinjiang Research Institute of Hematology, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
Supported by:
the National Natural Science Foundation of China, No. 81060050
CLC Number:
Wang Bing-chen, Jiang Ming. Current status of research on separation methods of graft-versus-leukemia effect and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation [J]. Chinese Journal of Tissue Engineering Research, 2017, 21(17): 2783-2788.
2.1 纳入资料基本概况 纳入42篇文献均为近年增强移植物抗白血病效应、减低移植物抗宿主病的相关文献[1-42]。 2.2 纳入资料的研究结果特征 2.2.1 供者淋巴细胞输注(DLI) 供者淋巴细胞输注即具有免疫活性的异源性供者淋巴细胞输注,其通过介导宿主体内的移植物抗白血病效应,达到预防白血病的复发的目的,是临床上一种重要的造血干细胞移植后过继免疫治疗,但供者淋巴细胞输注可引发移植物抗宿主病,导致严重后果。现在研究者通过大量的实验及临床观察尝试着通过多种途径提高供者淋巴细胞输注后的移植物抗白血病效应,减轻移植物抗宿主病。 输注被自杀基因转导的供者淋巴细胞:在输注T细胞前导入一段转导复制缺陷的基因,在发生移植物抗宿主病时通过特定药物来清除这些T细胞,从而控制甚至消除移植物抗宿主病。Weissinger等[2]长期随访观察11例单倍体造血干细胞移植的患者,不使用移植物抗宿主病预防药物,仅在移植后接受预先导表达HSV-TK、阻断LNGFR受体的逆转录病毒SFCMM-3的T细胞,其中3例患者发展为急性移植物抗宿主病,均通过更昔洛韦成功控制,7例患者在5年随访结束时仍存活。 输注疾病特异性抗原定向诱导产生的细胞毒性T淋巴细胞:疾病特异性抗原是仅限于恶性细胞的蛋白质,如BCR/ABL融合基因的蛋白质产物是在慢性粒细胞性白血病中的潜在移植物抗白血病效应靶点,通过输注这种经特异性定向诱导产生的特异性的细胞毒性T淋巴细胞,在发挥移植物抗白血病效应同时不破坏正常组织细胞,也不引起移植物抗宿主病。Bornhauser 等[3]纳入14例去T细胞移植后的慢性粒细胞性白血病患者,分别在移植后的28,56和112 d注入特异性细胞毒性T淋巴细胞(在体外,由携带白血病相关抗原PR1、WT1、BCL-ABL的成熟DC反复刺激产生),在随访的45个月中总存活率和分子学缓解率分别为93%和49%,并未发现移植物抗宿主病。除此之外输注用干扰素γ,白细胞介素2和抗CD3淋巴细胞培养“细胞因子诱导的杀伤细胞”(CIK细胞)也可以达到同样的目的[4]。 控制供者淋巴细胞输注的时间及剂量:对于供者淋巴细胞输注的输注时间问题,多数研究认为早期预防性供者淋巴细胞输注在移植物抗宿主病和移植物抗白血病效应上优于治疗性供者淋巴细胞输注。Krishnamurthy等[5]回顾分析113例患者在RIC-HSCT移植后接受供者淋巴细胞输注治疗的患者的生存状况,发现在移植后6个月内接受预防性供者淋巴细胞输注(pDLI)的5年生存率、无病生存率和移植物抗宿主病发生率均优于移植6个月后接受治疗性供者淋巴细胞输注(tDLI)的患者。对于输注剂量的问题:有研究指出,初始低剂量的输注与高剂量相比,移植物抗宿主病的发生率更低[6]。在此基础上有研究者提出分次逐级增量的输注方法,即先由低数量级开始输注,逐步增加细胞输注数量直到出现移植物抗白血病效应,与对照组单次大剂量输注相比,此方法能明显抑制移植物抗宿主病,而不影响移植物抗白血病效应。同时也有研究者指出输注时间、输注剂量、移植类型及HLA错配程度共同影响供者淋巴细胞输注后移植物抗宿主病的发生率及严重程度[7],应制定个体化输注方案。 靶向药物联合供者淋巴细胞输注输注不增加移植物抗宿主病风险,并可增强移植物抗白血病效应,达到深度缓解的效果。有一项第二阶段的临床试验显示,患者29例接受抗CTLA-4抗体联合供者淋巴细胞输注治疗的异基因造血干细胞移植后复发患者,未发生显著移植物抗宿主病[8]。 改良供者淋巴细胞输注(mDLI):有研究利用G-CSF动员的供者外周血(GPBSC)替代供者静态淋巴细胞并联合短程小剂量免疫抑制剂进行输注的一种供者淋巴细胞输注防治方案,与传统的供者淋巴细胞输注相比,虽然急性移植物抗宿主病的发生率未见明显减低,但较少引起严重的急性移植物抗宿主病[9];他们在另一项研究中,12例接受预防性应用G-CSF动员的供者外周血输注的高危白血病患者仅1例发生Ⅲ度及以上急性移植物抗宿主病,在563 d的中位随访时间内,仅3例患者复发,结果显示预防性应用G-CSF动员的供者外周血可以增加移植物抗白血病效应效应,很少引起严重的急性移植物抗宿主病[10]。 2.2.2 调节性T细胞 调节性T细胞(Treg)是CD4+ CD25+T细胞的一个亚群,目前认为其免疫表型为CD4+CD25highFoxp3+,在动物实验已证实其具有拮抗移植物抗宿主病同时保留移植物抗白血病效应的作用[11]。 在急性移植物抗宿主病方面,目前临床研究发现CD4+CD25highTreg细胞不足或者Foxp3+表达较低可能增加其发生的因素。有研究观察了32例全相合造血干细胞移植后患者体内CD4+CD25+T细胞和CD4+CD25+ Foxp3+T细胞的数量变化[12],发现与未发生移植物抗宿主病的患者相比,发生移植物抗宿主病患者中具有更高数量的CD4+CD25+T细胞,但在该患者群体中表达FOXP3+的细胞的比例CD4+CD25+T显着更低,表明急性移植物抗宿主病患者中大多数表达CD25的T细胞是活化的,而不是调节性T细胞。相反,在SCT后早期CD4+ FOXP3+T细胞数量增加的患者不太可能发展急性移植物抗宿主病。另一项研究分析供者外周血造血干细胞中CD3/Treg(gCD3/Treg)比率,发现低gCD3/Treg比率患者3年总生存率、无病生存率和移植相关死亡率优于高gCD3/Treg组,但两者在复发率上无显著性差异。该研究者认为,在造血干细胞移植后,Treg具有保留移植物抗白血病效应效应,防止急性移植物抗宿主病发生的作用[13]。有研究分析了35例接受亲缘单倍体非体外去T细胞造血干细胞移植(RHNT-PBSCT)的患者和20例健康对照着之间的外周血Treg细胞水平[14],在未发生急性移植物抗宿主病的移植患者分别在移植后+30 d,+60 d,+90 d天抽取外周血,如果患者移植后患有急性移植物抗宿主病,抗凝外周血和血清立即检测。研究发现Foxp3+Treg细胞在Ⅲ-Ⅳ度急性移植物抗宿主病组明显低于Ⅰ-Ⅱ度急性移植物抗宿主病组,Ⅰ-Ⅱ度急性移植物抗宿主病和未发生急性移植物抗宿主病组之间未见显著差异。同时还发现在CD25+单抗可以是Treg重建延迟15 d,在未发生急性移植物抗宿主病的患者在移植后30 d重建,在发生急性移植物抗宿主病的患者中Treg数量急剧下降,动态检测Treg细胞水平在早期预测RHNT-PBSCT后的急性移植物抗宿主病。 在慢性移植物抗宿主病方面,多数研究者认为Treg细胞水平与其发生无关。Ukena等[15]分析29例异基因造血干细胞移植后患者体内Treg数量,发现的在既往未发生过急性移植物抗宿主病的患者体内的Treg较未发生移植物抗宿主病者高,但既往发生过急性移植物抗宿主病的慢性移植物抗宿主病患者体内的Treg细胞要低于未发生急性移植物抗宿主病的,因此他们认为Treg细胞与慢性移植物抗宿主病无关,仅与急性移植物抗宿主病有关。但Jolanta B[16]等研究指出外周血Treg与移植物抗宿主病有关,但并不是影响慢性移植物抗宿主病的独立因素,慢性移植物抗宿主病的发生也并非全因外周血中Treg缺乏所致。 2.2.3 NK细胞 NK细胞不同于T细胞和B细胞,其细胞表面具有不同的激活性和抑制性受体,可介导活化和抑制信号,这些对立信号的平衡决定NK细胞的功能。如正常情况下,NK细胞识别自身MHC-Ⅰ,活化信号被抑制,抑制NK细胞对靶细胞发挥细胞溶解作用。Shaffer等[17]观察8例接受半相合NK细胞联合CD3+细胞输注治疗的复发或持续不缓解的髓系肿瘤患者,其中2例患者完全缓解,虽均在2个月内复发,但8例患者在12.9个月的中位生存期间均未发生显著的移植物抗宿主病。Ruggeri等[18]研究112例体外去T细胞的单倍体造血干细胞移植发现在移植前达到CR的患者中KIR错配的患者复发率更低(3% vs. 47%,P > 0.003),在移植前复发的患者中,EFS(34% vs. 6%,P=0.04)和缓解状(67% vs. 18%,P =0.02)况明显优于非错配组,并且复发或死亡的风险降低。这可能与NK细胞攻击受者的抗原提呈细胞(APC),从而减低T细胞介导的移植物抗宿主病和NK细胞活化受体的配基在移植物抗宿主病累及的组织低表达或不表达以及杀死受体T细胞,允许减少毒性的调节方案和消融急性髓细胞白血病细胞有关[18-19]。 NK细胞这种对肿瘤细胞的特异性识别主要是通过杀伤细胞免疫球蛋白样受体(KIR)来实现,KIR受体有两种亚型(KIR-A和KIR-B),其涉及的配体主要是HLA-C1,HLA-C2,和HLA B-BW4[20]。KIR特定的亚型和特定的等位基因配体错配时可能会增强移植物抗白血病效应效应,Cooley等[20]的早期研究发现KIR-B不匹配患者的3年无病生存率、3年总生存率优于KIR-A,进一步研究发现KIR-B与HLA-C1和HLA-C错配时,其总生存率及无病生存率有明显提高。Michaelis等[21]认为虽然没有发现足够的证据证明供者KIR-A和KIR-B在疾病复发和非复发死亡率之间存在显著,但供者KIR-B不匹配时疾病的复发率和非复发死亡率显著下降。因此,部分研究者希望利用这些等位基因优化受体-配体模型,进而达到降低复发率和改善生存的目的。但也有研究者对此并不认同,韩国的一项研究发现KIR-A和KIR-B之间总生存率、无病生存率及累积复发率均未明显差异,但这项研究仅观察了6例注入KIR不匹配供者NK细胞的成年急性白血病和骨髓增生异常综合征的患者[22]。 目前异源反应活性NK细胞的治疗优势已在髓系肿瘤(特别是急性髓细胞白血病)患者中得到证实,但在淋系标记的急性淋巴细胞白血病和淋巴瘤的治疗中,则未见体现。如在一项对41例HLA半相合造血干细胞移植患者在移植后输注供者的NK细胞的研究中发现,急性髓细胞白血病患者的无病生存和总生存率得到改善,但急性淋巴细胞白血病和淋巴瘤则未见提高[23]。这可能与急性淋巴细胞白血病原始细胞LFA-1低表达,致使NK细胞不能与其结合以及急性淋巴细胞白血病细胞与活化NK细胞受体配基表达缺失有关。 NK细胞的这种作用也并非在所有的移植模式下均有体现。在非体外T细胞的单倍体造血干细胞移植未能显示与Ruggeri等系列相同的结果[18, 24]。Bishara等[25]的研究发现,在体外部分去T细胞的单倍体造血干细胞移植中,NK同种异体反应与严重移植物抗宿主病的发生率增加相关,并且减少患者存活,但不与白血病复发相关。Huang等[26]将116例接受非体外去T细胞单倍体造血干细胞移植的受试者依据KIR配体是否错配分成KIR配体错配组和不错配组,依据同种异体移植物中CD3+T细胞的剂量是否>1.48×108/kg分成高或低T细胞组,发现KIR错配显著增加了高T细胞组中的急性移植物抗宿主病的发生率,但在低T细胞组中几乎没有影响,同时发现KIR配体错配显着增加了患者的复发率,与高或低T细胞组无关。这种现象可能与以下因素有关:①同种反应性NK细胞对移植物抗白血病效应有益的作用可能已经被同种异体移植中的大剂量T细胞移植;②以G-BM(骨髓)和造血干细胞移植混合移植物,其中T细胞的剂量是单纯BM移植物的10倍,这可能削弱了抗胸腺淋巴细胞球蛋白(ATG)的体内T淋巴细胞效果;③T细胞影响体内NK细胞的功能和KIR表达。人类NK细胞有2个不同的亚群,CD56dim和CD56bright,在非去T造血干细胞移植中,CD56bright NK细胞在提高生存率、减少TRM方面起主要作用。这种移植模式中新生的NK并不完全成熟,即CD56dimNK和CD56brightNK不成比例。同时同种异体移植物中CD3+T细胞的剂量与CD56dim/CD56bright细胞的比例呈负相关;④完全依赖HLA分型来确定KIR配体是否错配的方法可能导致一些影响结果的其他重要因素被忽略[26-28]。 2.2.4 间充质干细胞 是一种可以从脐血、骨髓及脂肪中提取的不同于人体造血干细胞的一类成体干细胞。动物实验证实其具有抑制或者控制造血干细胞后移植物抗宿主病的发生率和严重程度的作用[29],但机制尚不明确,可能通过以下方式发挥作用:①调节Th1/ Th2细胞的平衡[30];②调控Treg细胞的功能[31];③抑制树突细胞的成熟、活化和抗原呈递[32];④抑制NK细胞及T、B细胞的增殖活化[33-34]。 急性移植物抗宿主病的治疗及预防:针对间充质干细胞在急性移植物抗宿主病治疗及预防方面是否有效及是否增加疾病复发率尚存一定争议。目前多数文献报道间充质干细胞可以治疗类固醇耐药的急性移植物抗宿主病,预防性输注或者联合造血干细胞(HSC)输注可以降低急性移植物抗宿主病发生率,并不增加疾病复发概率[35-39]。有些研究者认为间充质干细胞细胞并不能起到抑制移植物抗宿主病的作用,Blanc等[40]的研究指出间充质干细胞联合造血干细胞移植并未降低移植物抗宿主病的发生率。也有一些研究者发现间充质干细胞联合造血干细胞输注可能增加原发病的复发率,有研究采用随机分组法把30例准备接受异基因同胞全相合造血干细胞移植的恶性血液病患者分成间充质干细胞和造血干细胞共同移植的间充质干细胞组(10例)和仅接受造血干细胞移植的非间充质干细胞组(15例)[41],造血干细胞来自供者的骨髓和(或)外周血,间充质干细胞细胞则全部来自供者骨髓,于移植0 d先于造血干细胞输注,输注中位数为3.4×105/kg。间充质干细胞组和非间充质干细胞组的急性移植物抗宿主病的总发病率分别为44.4%和73.3%;慢性移植物抗宿主病的发病率分别为14.3%和28.6%;两组的复发率分别为60.0%和20.0%;3年无病生存率分别为30.0%和66.7%(P=0.035)。该研究者认为间充质干细胞联合造血干细胞移植可能降低移植物抗宿主病的发生率,但疾病复发率明显增加,并认为这可能与下述原因有关:①间充质干细胞能够抑制同种异体T细胞反应并通过细胞-细胞相互作用和可溶性因子抑制T细胞增殖,而这些有可能在同种异体移植设置中消除或削弱移植物抗白血病活性;②间充质干细胞体外和体内的行为之间存在差异,在体外抑制造血和非造血来源的恶性细胞的增殖间充质干细胞细胞,在体内则可以保留癌细胞的自我更新能力,同时通过其间质环境可以影响恶性疾病的进程,甚至有利于肿瘤细胞的生长。 慢性移植物抗宿主病的治疗及预防:目前有关间充质干细胞在慢性移植物抗宿主病治疗及预防方面的研究尚处于起步阶段,几项已完成的临床研究结果显示间充质干细胞在治疗及预防慢性移植物抗宿主病是安全有效的[33]。有研究发现接受间充质干细胞输注组2年慢性移植物抗宿主病累计发生率为27.4%,低于未接受间充质干细胞输注组的49.0%,在疾病复发率方面两组之间无显著差异[30]。"
[1] Rambaldi A, Biagi E, Bonini C, et al. Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia. 2015;29(1):1-10.[2] Weissinger EM, Borchers S, Silvani A, et al. Long term follow up of patients after allogeneic stem cell transplantation and transfusion of HSV-TKtransduced T-cells. Front Pharmacol. 2015;23(6):76:1-9.[3] Bornhauser M, Thiede C, Platzbecker U, et al. Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T celldepleted allogeneic hematopoietic cell transplantationin patients with chronic myeloid leukemia. Blood. 2011;117(26):7174-7184.[4] Luo Y, Zeng HQ, Shen Y, et al. Allogeneic hematopoietic stem cell transplantation following donor CIK cell infusion: a phase I study in patients with relapsed/refractory hematologic malignancies. Leuk Res. 2016;48:6-10.[5] Krishnamurthy P, Potter VT, Barber LD, et al. Outcome of donor lymphocyte infusion after t celledepleted allogeneic hematopoietic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndromes. Biol Blood Marrow Transplant. 2013;19:562-568.[6] Bar M, Sandmaier BM, Inamoto Y, et al. Donor lymphocyte infusion for relapsed hematological malignancies after allogeneic hematopoietic cell transplantation: prognostic relevance of the initial CD3 T cell dose. Biol Blood Marrow Transplant. 2013;19(6):949-957.[7] Yun HD, Waller EK. Finding the sweet spot for donor lymphocyte infusions. Biol Blood Marrow Transplant. 2013;19(4):507-508.[8] Bashey A, Medina B, Corringham S, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7): 1581-1588.[9] Huang XJ, Liu DH, Xu LP, et al. Prophylactic infusion of donor granulocyte colony stimulating factor mobilizedperipheral blood progenitor cells after allogeneic hematological stem celltransplantation in patients with high-risk leukemia. Leukemia. 2006;20:365-368.[10] Huang X, Guo N, Ren H, et al. An improved anti-leukemic effect achieved with donor progenitor cell infusion for relapse patients allogeneic bone marrow transplantation. Chin Med. 2003;116.736-741.[11] Nishimura E, Sakihama T, Setoguchi R, et al. Induction of antigen-specific immunolugic tolerance by in vivo and in vitro antigen-specific expansin of naturally arising Foxp3+CD25+ CD4+ regulation T cell. Int Immunol. 2004;16(8): 1189-1207.[12] Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD followingHLA-matched allogeneic SCT. Blood. 2006;108(4):1291-1297.[13] Delia M, Pastore D, Mestice A, et al. Outcome of allogeneic peripheral blood stem cell transplantation by donor graft CD3+/Tregs ratio: a single-center experience. Biol Blood Marrow Transplant. 2013;19(3):495-499.[14] Pang NN, Duan XL, Jiang M, et al. Reconstitution and clinical signifcance of T cell subsets in the early stage after related HLA-mismatched peripheral blood hematopoietic SCT without T-cell depletion in vitro. Int J Clin Exp Pathol. 2015;8(8):8892- 8901.[15] Stanzani M, Martins SL, Saliba RM, et al. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood. 2004;103:1140-1146.[16] Ukena SN, Grosse J, Mischak-Weissinger E, et al. Acute but not chronic graft-versus-host disease is associated with a reduction of circulating CD4+CD25highCD127low/−regulatory T cells. Blood. 2010;66:664-672.[17] Shaffer BC, Le Luduec JB, Forlenza C, et al. Phase ii study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(4):705-709.[18] Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433-440.[19] Locatelli F, Merli P, Rutella S. At the bedside:innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol. 2013;94(6):1141-1157.[20] Cooley S, Weisdorf DJ, Guethlein LA, et al. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J Immunol. 2014;192(10):4592-4600.[21] Mezger M, Bornhäuser M, Trenschel R, et al. KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol. 2014;93(9):1579-1586.[22] Park S, Kim K, Jang JH, et al. KIR alloreactivity based on the receptor-ligand model is associated with improved clinical outcomes of allogeneichematopoietic stem cell transplantation: Result of single center prospective study. Hum Immunol. 2015;76(9):636-643. [23] Choi I, Yoon SR, Park SY, et al. Donor-derived natural killer cells infused after human leukocyte antigen–haploidentical hematopoietic cell transplantation: a dose-escalation study. Biol Blood Marrow Transplant. 2014;20(5):696-704. [24] Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097-2100.[25] Bishara A, De Santis D, Witt CC, et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens. 2004;63:204-211.[26] Huang XJ, Zhao XY, Liu DH, et al. Deleterious effects of KIR ligand incompatibility on clinical outcomes in haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion. Leukemia. 2007;21:848-851.[27] Zhao XY, Chang YJ, Huang XJ. Conflicting impact of alloreactive nk cells on transplantation outcomes after haploidentical transplantation: do the reconstitution kinetics of natural killer cells create these differences? 2011;10: 1436-1442.[28] Chang YJ, Zhao XY, Huang XJ, et al. Effects of the NK cellrecovery on outcomes of unmanipulated haploidentical blood andmarrow transplantation for patients with hematologic malignancies. Biol Blood Marrow Transplant. 2008;14(3):323-334.[29] Yanez R, Lamana ML, Garcia-Castro J, et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582- 2591.[30] Gao L, Zhang YQ, Hu BY, et al. Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord–derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after hla-haploidentical stem-cell transplantation. Clin Oncol. 2016; 20;34(24):2843-2850.[31] Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25high FOXP3+ regulatory T cells. Stem Cells. 2008;26: 212-222.[32] Burchell JT, Strickland DH, Stumbles PA. The role of dendritic cells and regulatory T cells in the regulation of allergic asthma. Pharmacol Ther. 2010;125:1-10.[33] Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005;105:2821-2827. [34] Asari S, Itakura S, Ferreri K, et al. Mesenchymal stem cells supress B-cell terminal differentiation. Exp Hematol. 2009;37: 604-615.[35] Kuzmina LA, Petinati NA, Parovichnikova EN, et al. Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease-a phase ii study. Stem Cells Int. 2012;2012:968213.[36] Baron F, Lechanteur C, Willems E, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant. 2010;16:838-847.[37] Zhao K, Lou R, Huang F, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease afterhematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(1):97-104.[38] Li XH, Gao CJ, Da WM, et al. Reduced intensity conditioning, combined transplantation of haploidentical hematopoietic stem cells and mesenchymal stem cells in patients with severe aplastic anemia. PLoS One. 2014;9(3):e89666.[39] Muroi K, Miyamura K, Okada M, et al. Bone marrow-derived mesenchymal stem cells(JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: a phase II/III study. Int J hematol. 2016;103(2):243-250.[40] Le Blanc K, Samuelesson H, Gustafasson B, et al. Transplantation of Mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukmia. 2007; 21:1733-1738.[41] Ning H, Yang F, Jiang M, et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia. 2008;22:593-599.[42] 杨廷,江明.减低剂量预处理方案在亲缘HLA单倍体相合造血干细胞移植中的应用[J].中国组织工程研究,2015,19(6):955-961. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[3] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[4] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[5] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[6] | Luo Xiaoling, Zhang Li, Yang Maohua, Xu Jie, Xu Xiaomei. Effect of naringenin on osteogenic differentiation of human periodontal ligament stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1051-1056. |
[7] | Wang Xinmin, Liu Fei, Xu Jie, Bai Yuxi, Lü Jian. Core decompression combined with dental pulp stem cells in the treatment of steroid-associated femoral head necrosis in rabbits [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1074-1079. |
[8] | Fang Xiaolei, Leng Jun, Zhang Chen, Liu Huimin, Guo Wen. Systematic evaluation of different therapeutic effects of mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1085-1092. |
[9] | Guo Jia, Ding Qionghua, Liu Ze, Lü Siyi, Zhou Quancheng, Gao Yuhua, Bai Chunyu. Biological characteristics and immunoregulation of exosomes derived from mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1093-1101. |
[10] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[11] | Huang Chenwei, Fei Yankang, Zhu Mengmei, Li Penghao, Yu Bing. Important role of glutathione in stemness and regulation of stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1119-1124. |
[12] | Hui Xiaoshan, Bai Jing, Zhou Siyuan, Wang Jie, Zhang Jinsheng, He Qingyong, Meng Peipei. Theoretical mechanism of traditional Chinese medicine theory on stem cell induced differentiation [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1125-1129. |
[13] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
[14] | Hou Jingying, Guo Tianzhu, Yu Menglei, Long Huibao, Wu Hao. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1005-1011. |
[15] | Zhou Ying, Zhang Huan, Liao Song, Hu Fanqi, Yi Jing, Liu Yubin, Jin Jide. Immunomodulatory effects of deferoxamine and interferon gamma on human dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1012-1019. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||