Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (43): 6479-6486.doi: 10.3969/j.issn.2095-4344.2016.43.014
Previous Articles Next Articles
Received:
2016-07-31
Online:
2016-10-21
Published:
2016-10-21
About author:
Mao Zi-mu, Studying for master’s degree, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
CLC Number:
Mao Zi-mu, Yin Kun, Wang Yu-ze, Wei Xiao-chun.
2.1 股骨头坏死的病因及病理生理学机制 2.1.1 病因 股骨头坏死分为创伤性和非创伤性2大类。影响股骨头坏死的相关因素很多,目前被广泛认可的病因有外伤(股骨颈骨折?髋关节后脱位)、乙醇的使用、类固醇药物使用、血液和放射治疗[5-8]。其他重要风险因素包括吸烟、儿童时期股骨头骨骺滑脱、妊娠、减压病、结缔组织病、高脂血症、脂肪栓塞综合征、病毒感染,肿瘤化疗、慢性肝病、器官移植、痛风及其他一些代谢性骨病等[9-12]?艾滋病病毒也与此病有关联,但目前仍不清楚股骨头坏死的发生是与病毒本身有关还是与抗病毒治疗有关[11,13]。许多病因及病理生理学机制仍有待研究,其中有很多不可控因素,如年龄、受伤至接受治疗间隔、骨折移位程度、股骨头血供受损情况等。国内有学者初步分析了关于中国大陆地区股骨头坏死病因学调查及危险因素,数据来源于中国9家大型三甲医院的住院患者(n=6 352),结果显示40-49年龄段患者占总数的27%,为比例最高年龄段,男性患者发病年龄平均比女性早三四年,在所有中心的调查中,男性患者均多于女性患者,总体上男女比例为7∶3,股骨头坏死的病因构成比中,酒精性股骨头坏死占30.49%,创伤性股骨头坏死占16.40%,激素性股骨头坏死占24.40%,特发性股骨头坏死占28.71%,激素性股骨头坏死单病原因中系统性红斑狼疮位列第一,汇总后自身免疫性疾病占比近一半,是激素性股骨头坏死最主要的原因,创伤性股骨头坏死多见于股骨颈骨折后,其坏死发生的时间与内固定取出的前后的关系有待进一步研究[14]。 2.1.2 病理生理学机制 股骨头坏死的病理生理学改变的主要问题之一是血供减少,股骨头血供主要有:股骨头圆韧带内的小凹动脉,沿股骨颈进入股骨头的股骨干滋养动脉升支,旋股内、外侧动脉的分支[15-17]。股骨头解剖结构的特殊性决定了其血供形成侧支循环的能力较差,股骨头一旦血供减少,养分和营养物质缺乏,将导致股骨头坏死。 既往研究表明,不同病因股骨头坏死的共同病理生理机制之一是成骨细胞和骨细胞的死亡[18]。从病理学角度讲,骨坏死是指骨基质支撑空的、不含有活性骨细胞的骨陷窝?胥少汀[19]研究发现,股骨头坏死演变过程大致可分为坏死期、修复期和股骨头塌陷期,缺血12-24 h,坏死区内除软骨外所有骨细胞死亡,缺血后一二天,发现骨髓细胞、毛细血管内皮细胞及骨细胞相继发生固缩、变形或溶解、陷窝内空虚,最早出现的修复反应是骨小梁之间原始间叶细胞和毛细血管增生,伤后数日即可开始并逐渐扩展,8-12周可遍及坏死区的大部分,在坏死骨小梁表面的间叶细胞逐渐分化成为骨细胞并合成新骨,这种分化主要在坏死骨小梁表面进行,远离坏死骨小梁处则很少分化,这种现象成为“极向分化”,新生骨最初以编织骨的形态覆盖整个坏死骨小梁,逐渐增厚,继而表面变为版样骨,使单位体积内的骨密度增加,未分化间叶细胞和破骨细胞穿入死骨区,进行吸收清除,并由新生骨代替后完全变为活骨,称为“爬行替代”过程,再经过漫长晚期塑造,变为成熟骨小梁。除此以外,骨质修复障碍被认为是股骨头发病的另一个重要病因[20]。最近的研究热点提示激素对内皮细胞的调节及局部血管内皮细胞床功能异常的新理论,为激素相关性股骨头坏死的发病机制提供了新的研究思路[21]。 2.2 多孔钽棒治疗股骨头坏死的理论 2.2.1 多孔钽金属生物材料力学特性 理想的骨科置入材料必须具有与人体骨骼构造相适宜的力学特性,钽(原子序数73)是一种罕见的过渡金属,其活动性在所有金属中排倒数第四,在体内呈惰性并具有高度耐腐蚀性[22],20世纪中期起便已用于医疗实践中,并显示出良好的医疗安全性[22-24]?美国FDA于1997年正式批准钽金属用于临床,现临床使用的多孔钽金属植入物多是以碳纤维支架为骨架,外喷涂钽金属涂层构成,碳纤维支架为多重十二面体的网状结构,其孔隙率可高达98%,明显高于其他生物固定材料如钴、铬、钛等30%-50%的孔隙率,遍布支架的所有孔隙均为相同或相近的六角形结构。碳支架表面的钽层厚40-60 μm。虽然碳支架构成了多孔钽金属的主体结构,但其质量仅占1%左右[25]。孔隙率为80%的多孔钽,其弹性模量仅为3 GPa,界于皮质骨(12-18 GPa)和松质骨(0.1-0.5 GPa)之间,最大抗压强度和抗剪切强度可达35-45 MPa,适宜的弹性模量使其在置入后的应力遮挡更少,能将受力良好的传递到周围骨组织,减少甚至避免材料周围的骨吸收,降低了植入物松动、变形、断裂的风险,更加有利于骨质的重塑。另外,多孔设计也使其表面有比其他材料更高的摩擦系数,置入后也更有利于形成局部稳定结构。Bobyn等[24]全面分析了多孔钽的材料学结构,其发现多孔钽孔隙大小在400-600 μm之间,其孔隙均为三维结构且相连通,这一特性使得细胞能够在其表面和孔隙内充分黏附、分化和生长,增加了置入后材料的稳定性,有利于骨重建与再生。随后Bobyn等[24]进行的多孔钽置入犬实验也证实了植入物与骨能形成良好的生物固定。 早于多孔钽棒置入开始应用的治疗股骨头坏死的传统术式有髓芯减压和带血管蒂的自体腓骨移植,髓芯减压降低了股骨头负重区的应力值,但单一髓芯减压会导致软骨下骨力学支撑减弱,可能导致股骨头塌陷进程加速;带血管蒂的腓骨移植能为坏死的股骨头负重区提供有效支撑,但在术中刮除死骨后,植入物应尽可能填满空腔,这对自体腓骨形态的打磨提出了很高要求,增加了手术难度和手术时间,如植入的自体腓骨无法填满股骨头空腔,术后在股骨头遗留无骨区,导致手术失败,同时,自体腓骨移植有供区疼痛和供区感染风险,相比之下,多孔钽棒置入可以避免自体移植的供区发病风险,同时为股骨头及软骨下骨板提供有效的力学支撑,达到与自体移植物相近的置入成功率。 2.2.2 多孔钽棒的生物相容性 在股骨头坏死的治疗中,除力学性能外,置入材料的成骨诱导作用对骨组织的愈合和再生具有重要意义[26]。Minagar等[27]在对4种金属纳米材料的研究中发现,多孔五氧化二钽表现出了不规则的高粗糙度多孔结构和高表面能量,且经退火处理后表现出优于其他金属纳米材料(Nb2O5、TiO2、ZrO2)的生物活性。Whitney等[28]在一项组织工程支架研究中证实,新生关节软骨可附着在多孔钽金属表面并向其空隙内生长。另有研究表明,置入体内后,骨小梁可在多孔钽金属植入物表面和孔隙内生长[23-24]。Wang等[29]对多孔钽的生物相容性和成骨诱导作用进行了体外和动物体内实验,发现随着时间的推移,成骨细胞在钽表面和孔壁出现增殖并表现出各种形态和细胞间连接,多孔钽棒与宿主骨连接紧密,在置入2,4周后,钽-宿主骨界面出现新骨和小血管;置入10周后,在钽-宿主骨界面和孔隙观察到新生骨组织;12周后,钽-宿主骨界面和孔隙被新生骨组织覆盖,骨小梁成熟并直接与材料相连接,说明多孔钽具有良好的生物相容性并且无毒,这与林凤飞[30]、Hoekstra等[31]的部分研究结果一致。Ren等[32]在多孔钽棒置入胫骨火器伤兔实验模型的研究中发现,4周后纤维组织覆盖置入的多孔钽棒表面,8周后置入材料延伸出新生骨痂并出现骨膜反应,16周后创伤周围的新生骨痂完全包裹了多孔钽棒,实验组Lane-Sandhu X射线评分较对照组明显升高,说明多孔钽棒与骨组织具有良好的生物相容性并能促进创伤修复。林凤飞等[30]制备多孔钽金属浸提液并作用于体外培养的人成骨细胞,检测成骨分化标志物碱性磷酸酶及骨成熟标志物骨钙蛋白[33-36],观察多孔钽金属材料对骨生长及标志物活性的影响,结果显示,培养24,48,72 h后,实验组与对照组碱性磷酸酶 和骨钙蛋白含量比较差异无显著性意义(P > 0.05),表明多孔钽金属材料对成骨细胞生长无不良影响?Zhao等[37]将骨髓基质干细胞与多孔钽金属联合培养,分别于第2,5,7天用GFP染色及透射电镜观察骨髓基质干细胞在多孔钽金属上的黏附与增殖情况,GFP染色结果显示,联合培养后第2天时,可见骨髓基质干细胞均匀分布在钽金属表面,部分散布在微孔内;第5天可见细胞在金属内立体增殖传代,可见多条伪足黏附于金属上;第7天骨髓基质干细胞大量增殖,逐渐铺满多孔钽金属的立体结构,向各方向伸出伪足,活力良好,电镜下观察也得到同样结果。上述研究表明,多孔钽金属无细胞毒性,具有良好的生物相容性。 2.3 多孔钽棒置入治疗股骨头坏死的临床应用 2.3.1 短期疗效 多孔钽棒治疗股骨头坏死近年来报道较多的术式为髓芯减压钽棒置入,其短期随访结果是积极的。较早的,Veillete等[38]进行的1项临床随访中,对52例(58髋)股骨头坏死患者进行髓芯减压钽棒置入后,24个月的保髋率达到了91.8%,48个月的保髋率为68.1%,其认为多孔钽棒置入对治疗早期股骨头坏死有积极作用,这与Liu[4]、方锐等[39]的研究结论相同。Liu等[40]随访了149例(168髋)接受钽棒置入的股骨头坏死患者,以全髋关节置换为截止点,发现术后HSS髋关节评分及影像学评价均优于传统手术,1年保髋率为95%,2年保髋率为78%,3年保髋率为72%,4年保髋率为68.8%。2012年,Malizos等[41]提出的新技术,改单钽棒置入为2个或3个直径4.2-4.7 mm的钽钉同时置入股骨头坏死区域,并应用此技术治疗21例(26髋)早期股骨头缺血性坏死患者,成功随访24髋,平均随访46个月,HSS髋关节评分从术前平均65.2分提高至术后平均88.1分,末次随访显示有3髋手术失败,超过2/3的患者影像学表现良好,其中远期疗效尚待观察?另有研究使用病灶清除后打压植骨联合多孔钽棒置入及带血管蒂髂骨瓣转移联合多孔钽棒置入治疗股骨头坏死,均取得良好短期疗效[42-43]。 2.3.2 干细胞移植联合疗法 为取得更长得保髋时间,近年来多孔钽棒置入治疗早期股骨头坏死更多转向联合疗法,钽棒置入与干细胞移植联合疗法是其中之一。骨坏死的发生造成了局部骨细胞活性降低或死亡,在单独应用多孔钽金属时尽管有较好的力学支撑,但缺乏足够的促进成骨的种子细胞,直接在骨缺损部位移植成骨性干细胞,可促进成骨性细胞募集,增加骨诱导物质浓度,加速骨生长过程[44-45]。Mao等[46]进行了一项单纯钽棒置入疗法与钽棒置入和经粒细胞集落刺激因子动员的外周血干细胞灌注联合疗法比较研究,55例(89髋)股骨头坏死患者被随机分入联合治疗组和单纯钽棒置入治疗组(对照组),采用Harris髋关节评分和ARCO分型评估疗效,随访36个月后,对照组有21.95%保髋失败需要行全髋关节置换,联合治疗组只有6.25%需要行全髋关节置换,表明联合治疗组延长了保髋维持时间。骨髓间充质干细胞是一类成纤维样细胞,能够自我增殖和多向分化,既往研究表明它可以分化为成骨细胞、软骨细胞、脂肪细胞、神经元样细胞和肝细胞等[47-48]。Zhao等[37]设想将干细胞黏附于多孔钽金属的微孔内,待干细胞生长增殖到一定数量后,将其联合植入到骨坏死部位,多孔钽金属起到支撑作用的同时有足够的种子细胞修复坏死部位,其采用多孔钽棒置入联合骨髓间充质干细胞、带血管蒂髂骨植骨疗法治疗24例(31髋)晚期股骨头坏死患者,其中ARCOⅢ期19髋,ARCOⅣ期12髋,平均随访时间(64.35±13.03)个月,只有5髋需行全髋关节置换,ARCOⅢc期保髋率89.47%,ARCOⅣ期保髋率75%,Harris髋关评分由术前的(38.74±5.88)分提高到(77.23±14.75)分,同时其研究发现,单纯置入多孔钽金属组(对照组)和植入钽金属与干细胞联合培养组植入6周后可观察到两组置入的钽金属周围新生骨生成明显增多,单纯置入钽金属组和植入钽金属和干细胞联合培养组新生骨宽度的平均值比较差异有统计学意义(P < 0.05),而在骨长入多孔钽金属内部方面,两组硬组织切片荧光显示均有新生骨长入多孔钽金属的微孔内,加入骨髓间充质干细胞组的骨长入深度与未加入干细胞组的骨长入深度比较差异有统计学意义(P < 0.05),显示骨髓间充质干细胞在体内的增殖分化及向成骨细胞转化,可加快新骨的生成,表明钽棒置入与干细胞移植疗法联合治疗对中远期保髋具有重要意义。 2.3.3 最有效置入术式的探索 虽然很多钽棒置入术术式已被用于治疗早期股骨头坏死,并取得一些早期临床成果,但其最有效的置入方式和置入位置至今未被阐述。为了确定在不同条件下最有效的钽棒置入方式和置入位置,Shi等[49]利用3D有限元分析,建立3组钽棒置入模型,分别将钽棒置入股骨头负重区坏死部位内侧,负重区坏死部位中部,负重区坏死部位外侧,棒头置入皮质骨下5 mm,其余坏死区以人工骨填充,并将股骨头坏死范围以股骨头中心到负重区的锥形范围分为60°、90°、120° 3个区间,在每个区间内分别建立3种钽棒置入3D模型,同时建立单纯髓芯减压模型,带血管蒂的自体腓骨移植模型和缩短5 mm钽棒长度的短钽棒置入模型,共建立21个3D有限元模型,评估股骨头塌陷风险,发现在股骨头坏死范围较小时(60°),上述模型的塌陷值比较差异并无统计学意义;但当股骨头坏死范围较大时(120°),骨坏死区域内侧钽棒置入模型人工骨表面的压力值较其他模型明显减小(P < 0.01),因此其认为在坏死范围较大时,钽棒置入位置应靠近坏死区内侧,以降低塌陷风险。 2.4 争议 尽管很多钽棒置入短期随访报道是积极的,但样本量普遍较小,且目前多孔钽棒置入长期随访报道较少且结论不一,部分学者对其长期保髋作用持否定观点。Miao等[50]对30例股骨头坏死患者进行髓芯减压钽棒置入,另30例患者进行股骨外侧钻五孔减压,钽棒置入组平均随访25.6个月,钻孔减压组平均随访26.3个月,钽棒置入组没有体现出比钻孔减压组有利的结果。另有对钽棒置入保髋失败案例进行组织学研究显示,原先置入钽棒的部位几乎没有骨内生长,同时软骨下骨机械支撑不足[51],有观点认为这些失败案例可能由生物材料过敏导致[52]。此外,有报道显示在钽棒保髋失败需行全髋关节置换时,取出钽棒十分困难且容易导致多种并发症如骨折等[53]。Amanatullah等[53]对多孔钽棒置入保髋失败的患者进行多孔钽棒取出术时,发现由于自体骨长入钽棒孔隙,不仅取出钽棒十分困难,且术后X射线片显示,体内有金属碎屑残留,同时在干骺端和股骨颈处有明显的骨质流失,尽可能多的保留骨组织和尽可能彻底地清除金属残留互相矛盾。"
[1]Zhang Y,Li L,Shi ZJ,et al.Porous tantalum rod implant is an effective and safe choice for early-stage femoral head necrosis: a meta-analysis of clinical trials.Eur J Orthop Surg Traumatol.2013;23(2):211-217. [2]Symptomatic multifocal osteonecrosis.A multicenter study. Collaborative Osteonecrosis Group.Clinical Orthop Relat Res.1999;(369):312-326. [3]Sotereanos NG,DeMeo PJ,Hughes TB,et al. Autogenous osteochondral transfer in the femoral head after osteonecrosis.Orthopedics.2008;31(2):177. [4]Liu G,Wang J,Yang S,et al.Effect of a porous tantalum rod on early and intermediate stages of necrosis of the femoral head.Biomed Mater.2010;5(6):065003. [5]Mont MA,Carbone JJ,Fairbank AC.Core decompression versus nonoperative management for osteonecrosis of the hip.Clin Orthop Relat Res. 1996; (324):169-178. [6]Mont MA,Hungerford DS.Non-traumatic avascular necrosis of the femoral head.J Bone Joint Surg Am. 1995;77(3):459-474. [7]Goodman SB.Survival analysis of hips treated with core decompression or vascularized fibular grafting because of avascular necrosis.J Bone Joint Surg Am. 2000;82(2):289. [8]Scully SP,Aaron RK,Urbaniak JR.Survival analysis of hips treated with core decompression or vascularized fibular grafting because of avascular necrosis.J Bone Joint Surg Am.1998;80(9):1270-1275. [9]Chernetsky SG,Mont MA,LaPorte DM,et al.Pathologic features in steroid and nonsteroid associated osteonecrosis.Clin Orthop Relat Res. 1999;(368): 149-161. [10]Wang XS,Zhuang QY,Weng XS,et al.Etiological and clinical analysis of osteonecrosis of the femoral head in Chinese patients.Chin Med J. 2013;126(2):290-295. [11]Morse CG,Mican JM,Jones EC,et al.The incidence and natural history of osteonecrosis in HIV-infected adults. Clin Infect Dis.2007;44(5):739-748. [12]Mont MA,Cherian JJ,Sierra RJ,et al.Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A Ten-Year Update.J Bone Joint Surg Am.2015;97(19):1604-1627. [13]Blacksin MF,Kloser PC,Simon J.Avascular necrosis of bone in human immunodeficiency virus infected patients.Clin Imaging.1999;23(5):314-318. [14]Cui L,Zhuang Q,Lin J,et al.Multicentric epidemiologic study on six thousand three hundred and ninety five cases of femoral head osteonecrosis in China.Int Orthop. 2016;40(2):267-276. [15]刘时伟,贾光耀,梅炯.股骨头颈部血供的研究现状与展望[J].外科研究与新技术,2012,1(2):158-161. [16]Zlotorowicz M,Szczodry M,Czubak J,et al.Anatomy of the medial femoral circumflex artery with respect to the vascularity of the femoral head.J Bone Joint Surg Br. 2011;93(11):1471-1474. [17]Boraiah S,Dyke JP,Hettrich C,et al.Assessment of vascularity of the femoral head using gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging: a cadaver study.J Bone Joint Surg Br. 2009;91(1):131-137. [18]Youm YS,Lee SY,Lee SH.Apoptosis in the osteonecrosis of the femoral head.Clin in Orthop Surg. 2010;2(4):250-255. [19]胥少汀.骨科手术并发症预防与处理[M].3版.北京:人民军医出版社,2010. [20]Assouline-Dayan Y,Chang C,Greenspan A,et al. Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002;32(2):94-124. [21]Kerachian MA,Seguin C,Harvey EJ.Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action.J Steroid Biochem Mol Biol.2009;114(3-5):121-128. [22]Paprottka KJ,Paprottka PM,Reiser MF,et al.Comparative study of the corrosion behavior of peripheral stents in an accelerated corrosion model: experimental in vitro study of 28 metallic vascular endoprostheses.Diagn Interv Radiol. 2015;21(5):403-409. [23]Frigg A,Dougall H,Boyd S,et al.Can porous tantalum be used to achieve ankle and subtalar arthrodesis?: a pilot study.Clin Orthop Relat Res. 2010;468(1):209-216. [24]Bobyn JD,Stackpool GJ,Hacking SA,et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial.J Bone Joint Surg Br.1999;81(5):907-914. [25]Zardiackas LD,Parsell DE,Dillon LD,et al.Structure, metallurgy, and mechanical properties of a porous tantalum foam.J Biomed Mater Res. 2001;58(2):180-187. [26]Mohandas G,Oskolkov N,McMahon MT,et al.Porous tantalum and tantalum oxide nanoparticles for regenerative medicine.Acta Neurobiol Exp (Wars). 2014;74(2):188-196. [27]Minagar S,Berndt CC,Wen C.Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala,Titania and Zirconia via Anodization.J Funct Biomater. 2015;6(2):153-170. [28]Whitney GA,Mera H,Weidenbecher M,et al.Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum.Biores Open Access. 2012;1(4):157-165. [29]Wang Q,Zhang H,Li Q,et al.Biocompatibility and osteogenic properties of porous tantalum.Exp Ther Med.2015;9(3):780-786. [30]林凤飞,郑明,刘伯龄,等.多孔钽金属与成骨细胞生物相容性的实验研究[J].中国矫形外科杂志,2014,22(12):1119-1123. [31]Hoekstra JW,van den Beucken JJ,Leeuwenburgh SC,et al.Tantalumpentoxide as a radiopacifier in injectable calcium phosphate cements for bone substitution.Tissue Eng Part C Methods. 2011;17(9): 907-913. [32]Ren B,Zhai Z,Guo K,et al.The application of porous tantalum cylinder to the repair of comminuted bone defects: a study of rabbit firearm injuries.Int J Clin Exp Med.2015;8(4):5055-5064. [33]丁立峰,周振东,杨军,等.骨形态发生蛋白2 基因转染的兔骨髓间充质干细胞复合聚乳酸-聚己内酯支架体外构建载基因仿生骨的实验研究[J].中国矫形外科杂志, 2013, 21(9):918-923. [34]许子星,陈建庭,张鑫鑫,等.新型活性修饰聚乳酸组织工程骨的体外成骨研究[J].中国矫形外科杂志, 2011,19(3):222-227. [35]Guo Y,Zhang CQ,Zeng QC,et al.Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential.Biomed Eng Online. 2012;11:80. [36]Mahalingam CD,Datta T,Patil RV,et al. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone.J Endocrinol. 2011;211(2):145-156. [37]Zhao D,Liu B,Wang B,et al.Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head.Biomed Res Int.2015;2015:240506. [38]Veillette CJ,Mehdian H,Schemitsch EH,et al. Survivorship analysis and radiographic outcome following tantalum rod insertion for osteonecrosis of the femoral head.J Bone Joint Surg Am.2006;88Suppl 3:48-55. [39]方锐,梁治权,孟庆才,等.多孔钽棒置入治疗股骨头坏死16例[J].中国组织工程研究与临床康复, 2011,15(34): 6445-6448. [40]Liu ZH,Guo WS,Li ZR,et al.Porous tantalum rods for treating osteonecrosis of the femoral head.Genet Mol Res.2014;13(4):8342-8352. [41]Malizos KN,Papasoulis E,Dailiana ZH,et al.Early results of a novel technique using multiple small tantalum pegs for the treatment of osteonecrosis of the femoral head: a case series involving 26 hips.J Bone Joint Surg Br.2012;94(2):173-178. [42]朱建辛,王跃,邓俊才,等.病灶清除后打压植骨联合多孔钽金属棒植入治疗早期股骨头缺血性坏死[J].中国修复重建外科杂志,2011,25(11):1335-1338. [43]赵德伟,谢辉,王本杰,等.带血管蒂髂骨瓣转移联合多孔钽金属棒植入治疗股骨头缺血性坏死[J].中华显微外科杂志, 2014,37(1):29-34. [44]Wang M,Liao Q,Zhou B,et al.Preliminary study of influence of bone tissue from osteonecrosis of femoral head on the proliferation and differentiation of canine bone marrow mesenchymal stem cells.Zhonghua Yi Xue Za Zhi.2013;93(11):856-859. [45]Hernigou P,Poignard A,Manicom O,et al.The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone.J Bone Joint Surg Am.2005;87(7):896-902. [46]Mao Q,Wang W,Xu T,et al.Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial.J Bone Miner Res. 2015; 30(4):647-656. [47]Choi CB,Cho YK,Prakash KV,et al.Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells.Biochem Biophys Res Commun.2006;350(1):138-146. [48]Campagnoli C,Roberts IA,Kumar S,et al.Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood.2001;98(8):2396-2402. [49]Shi J,Chen J,Wu J,et al.Evaluation of the 3D finite element method using a tantalum rod for osteonecrosis of the femoral head.Med Sci Monit. 2014;20:2556-2564. [50]Miao H,Ye D,Liang W,et al.Effect of Osteonecrosis Intervention Rod Versus Core Decompression Using Multiple Small Drill Holes on Early Stages of Necrosis of the Femoral Head: A Prospective Study on a Series of 60 Patients with a Minimum 1-Year-Follow-Up. Open Orthop J.2015;9:179-184. [51]Tanzer M,Bobyn JD,Krygier JJ,et al.Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants.J Bone Joint Surg Am. 2008; 90(6):1282-1289. [52]Basko-Plluska JL,Thyssen JP,Schalock PC.Cutaneous and systemic hypersensitivity reactions to metallic implants.Dermatitis.2011;22(2):65-79. [53]Amanatullah DF,Farac R,McDonald TJ,et al. Subtrochanteric Fracture following Removal of a Porous Tantalum Implant.Case Rep Orthop. 2013;2013:946745. [54]Schmitt-Sody M,Kirchhoff C,Mayer W,et al.Avascular necrosis of the femoral head: inter- and intraobserver variations of Ficat and ARCO classifications.Int Orthop. 2008;32(3):283-287. [55]Pierce TP,Jauregui JJ,Elmallah RK,et al.A current review of core decompression in the treatment of osteonecrosis of the femoral head. Current reviews in musculoskeletal medicine.Curr Rev Musculoskelet Med.2015;8(3):228-232. [56]Ficat RP.Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment.J Bone Joint Surg Br. 1985;67(1):3-9. [57]Steinberg ME,Hayken GD,Steinberg DR.A quantitative system for staging avascular necrosis.J Bone Joint Surg Br.1995;77(1):34-41. [58]Moya-Angeler J,Gianakos AL,Villa JC,et al.Current concepts on osteonecrosis of the femoral head.World J Orthop.2015;6(8):590-601. [59]赵德伟,徐达传,崔旭.股骨头不同区域囊变对力学承载的影响[J].中华骨科杂志, 2005,25(4):232-235. [60]Brannon JK.Nontraumatic osteonecrosis of the femoral head: endoscopic visualization of its avascular burden.Orthopedics.2012;35(9):e1314-1322. [61]Balla VK,Bodhak S,Bose S,et al.Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties.Acta biomaterialia. 2010;6(8):3349-3359. [62]Tang Z,Xie Y,Yang F,et al.Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.PLoS One.2013;8(6):e66263. [63]Xiao D,Ye M,Li X,et al.Biomechanics analysis for the treatment of ischemic necrosis of the femoral head by using an interior supporting system.Int J Clin Exp Med.2015;8(3):4551-4556. [64]Ma FX,Han ZC.Akt signaling and its role in postnatal neovascularization.Histol Histopathol. 2005;20(1):275-281. [65]Hill JM,Zalos G,Halcox JP,et al.Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.N Engl J Med.2003;348(7):593-600. [66]Murayama T,Tepper OM,Silver M,et al.Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo.Exp Hematol. 2002;30(8): 967-972. [67]Peichev M,Naiyer AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors.Blood. 2000;95(3):952-958. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Ma Zhijie, Li Jingyu, Cao Fang, Liu Rong, Zhao Dewei. Influencing factors and biological property of novel biomedical materials: porous silicon carbide coated with bioactive tantalum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 558-563. |
[5] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[6] | Shi Xiaoxiu, Mao Shilong, Liu Yang, Ma Xingshuang, Luo Yanfeng. Comparison of tantalum and titanium (alloy) as orthopedic materials: physical and chemical indexes, antibacterial and osteogenic ability [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 593-599. |
[7] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[8] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[9] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[10] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[11] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[12] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[13] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[14] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[15] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||