Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (27): 4098-4104.doi: 10.3969/j.issn.2095-4344.2016.27.021
Du Jun-wen, Wu Tao, Zhang Kun, Su Bai-yu, Lu Cai-ping, Wang Wei-chao, Lei Lin, Guo Jing-xia
Revised:
2016-04-24
Online:
2016-06-30
Published:
2016-06-30
Contact:
Wang Wei-chao, Shijiazhuang First Hospital, Shijiazhuang 050000, Hebei Province, China
About author:
Du Jun-wen, Master, Associate chief physician, Shijiazhuang First Hospital, Shijiazhuang 050000, Hebei Province, China
Supported by:
the Shijiazhuang Science and Technology Research and Development Guide Project in 2013, No. 131462423
CLC Number:
Du Jun-wen, Wu Tao, Zhang Kun, Su Bai-yu, Lu Cai-ping, Wang Wei-chao, Lei Lin, Guo Jing-xia. Thrombospondin-1 expression in the kidney of a rat model of fibrosis[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(27): 4098-4104.
2.1 造模成功动物数量及过程 30只大鼠均完成实验进入结果分析,实验造模过程中无死亡。造模流程图见图1。 2.2 模型更接近人类或临床实践/模型稳定性 该模型各项生化指标变化显著,间质纤维化病变突出,与临床肾纤维化的发生发展过程及其相似。使用该模型的一些研究结果与临床患者的观察结果相似。 同时,此方法成模率高,重复性好,啮齿类动物模型可反映人类肾脏纤维化的疾病过程。所以该模型是一种研究肾纤维化发生机制、肾脏细胞转化和评价肾纤维化治疗方法的理想模型。 2.3 肾功能检测 2.3.1 尿蛋白 大鼠造模后1,2,3周,利用Bradford方法检测尿蛋白含量。造模后1周,与假手术组相比,模型组大鼠的尿蛋白水平显著升高(P < 0.05);造模后2周起,模型组大鼠尿蛋白升高更明显,与假手术组相比差异有非常显著性意义(P < 0.01),且呈上升趋势。见表1。 2.3.2 血清肌酐与尿素氮 大鼠造模后1,2,3周,利用ELISA方法检测大鼠血清中肌酐与尿素氮水平。造模后1周,模型组大鼠血清中肌酐与尿素氮较假手术组显著升高(P < 0.05);造模后3周,模型组大鼠血清中肌酐与尿素氮升高更明显,与假手术组相比差异有非常显著性意义(P < 0.01),见表2。尿蛋白、血清肌酐与尿素氮表达量的增加表明肾功能损伤加重。 2.4 大鼠肾脏组织中血小板反应蛋白1、血管内皮生长因子和转化生长因子β1蛋白的表达 Western blot方法检测大鼠手术后,结扎侧肾脏组织中血小板反应蛋白1、血管内皮生长因子和转化生长因子β1蛋白的表达水平。结果显示,造模1周后,模型组大鼠肾脏组织中转化生长因子β1与血小板反应蛋白1的蛋白表达量开始升高,且模型组中血管内皮生长因子蛋白的表达量与假手术组相比也开始降低,显著低于假手术组;造模后3周,模型组转化生长因子β1与血小板反应蛋白1的蛋白表达量升高更明显,血管内皮生长因子蛋白的表达量与假手术组相比亦显著降低。见图2、表3。 2.5 大鼠肾组织纤维化的病理变化 苏木精-伊红染色观察大鼠术后肾组织病理结构变化。假手术组大鼠肾组织结构完整,没有变性和坏死,细胞核周围没有炎性细胞浸润,在间质中没有纤维细胞增殖、腺嘌呤结晶沉积及肾小管上皮细胞空泡化(图3A-C);模型组大鼠肾组织中,肾小管沉积很多结晶且上皮细胞空泡化严重,肾小球内皮细胞、上皮细胞、系膜细胞完全消失萎缩,肾包膜与肾小管部分细胞全部消失,间质中纤维细胞显著增殖,并伴有大量的炎性细胞浸润,并随时间的推移越加严重(图3D-F)。"
[1] Tang J, Liu CY, Lu MM,et al. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem. 2015;407(1-2): 77-87. [2] Qian Y,Peng K,Qiu C,et al. Novel epidermal growth factor receptor inhibitor attenuates angiotensin II-induced kidney fibrosis. Pharmacol Exp Ther.2016; 356(1):32-42. [3] Chen CL, Chou KJ, Fang HC,et al. Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther. 2015;6:239. [4] Nolan KA,Brennan EP,Scholz CC,et al. Paricalcitol protects against TGF-β1-induced fibrotic responses in hypoxia and stabilises HIF-α in renal epithelia. Exp Cell Res.2015;330(2):371-381. [5] Ding Y,Kim Sl,Lee SY, et al. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol. 2014;25(12):2835-2846. [6] Bige N,Shweke N,Benhassine S,et al. Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int. 2012;81(12):1226-1238. [7] Cui W,Maimaitiyiming H,Qi X,et al. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. Am J Physiol Renal Physiol. 2013;305(6):F871-880. [8] Hugo C1, Kang DH, Johnson RJ.Sustained expression of thrombospondin-1 is associated with the development of glomerular and tubulointerstitial fibrosis in the remnant kidney model.Nephron. 2002; 90(4):460-470. [9] Kang DH, Anderson S, Kim YG,et al.Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease.Am J Kidney Dis. 2001;37(3):601-611. [10] Ma H, Li XH, Li Z, et al.Localized expressing tendency of nuclear transcription factor kappa-B, pro-fibrosis genetic factors and fibronectin mRNA in renal tissues in proteinuria overload nephrotic young rats].Zhonghua Er Ke Za Zhi. 2005; 43(11):814-818. [11] 韩红,孙东,麻艳艳,等.单侧输尿管梗阻模型小鼠肾脏微血管损伤与肾间质纤维化的关系研究[J].中国病理生理杂志, 2010, 26(12):2478-2486. [12] Yan J, Zhang Z, Yang J,et al. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.J Am Soc Nephrol. 2015;26(12):3060-3071. [13] Sakai N, Wada T.T Helper 2 Cytokine Signaling in Bone Marrow-Derived Fibroblasts: A Target for Renal Fibrosis.J Am Soc Nephrol. 2015; 26(12):2896-2898. [14] Nashan B, Schemmer P, Braun F,et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. Trials. 2015; 16:118. [15] Racca MA, Novoa PA, Rodríguez I,et al. Renal dysfunction and intragraft proMMP9 activity in renal transplant recipients with interstitial fibrosis and tubular atrophy. Transpl Int. 2015;28(1):71-78. [16] Hirt-Minkowski P, Marti HP, Hönger G, et al.Correlation of serum and urinary matrix metalloproteases/tissue inhibitors of metalloproteases with subclinical allograft fibrosis in renal transplantation.Transpl Immunol. 2014; 30(1):1-6. [17] Nozue T, Yamamoto S, Tohyama S,et al. Impacts of estimated glomerular filtration rate on coronary atherosclerosis and plaque composition before and during statin therapy in patients with normal to mild renal dysfunction: subanalysis of the TRUTH study. Nephrology (Carlton). 2012;17(7):628-635. [18] Rivelli RF, Gonçalves RT, Leite M Jr,et al. Early withdrawal of calcineurin inhibitor from a sirolimus-based immunosuppression stabilizes fibrosis and the transforming growth factor-β signalling pathway in kidney transplant. Nephrology (Carlton). 2015;20(3):168-176. [19] Tanaka Y, Kume S, Araki H,et al. 1-Methylnicotinamide ameliorates lipotoxicity-induced oxidative stress and cell death in kidney proximal tubularcells. Free Radic Biol Med. 2015;89:831-841. [20] Hou T, Xiao Z, Li Y,et al. Norcantharidin inhibits renal interstitial fibrosis by downregulating PP2Ac expression. Am J Transl Res. 2015;7(11):2199-211. [21] Lu Z, Zeng Y, Lu F,et al. Rhubarb Enema Attenuates Renal Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats by Alleviating Indoxyl Sulfate Overload. PLoS One. 2015;10(12):e0144726. [22] Hirata M, Tashiro Y, Aizawa K,et al. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats. Physiol Rep. 2015;3(12). pii: e12637. [23] 姜汉杰,李婉,王辰,等. 丹参粉针剂对单侧输尿管结扎大鼠肾纤维化的保护作用[J].中国新药杂志, 2015,24(22): 2606-2631. [24] Belmiro CL, Gonçalves RG, Kozlowski EO,et al. Dermatan sulfate reduces monocyte chemoattractant protein 1 and TGF-β production, as well as macrophage recruitment and myofibroblast accumulation in mice with unilateral ureteral obstruction. Braz J Med Biol Res. 2011;44(7):624-633. [25] Kim D, Lee AS, Jung YJ,et al. Tamoxifen ameliorates renal tubulointerstitial fibrosis by modulation of estrogen receptor α-mediated transforming growth factor-β1/Smad signaling pathway. Nephrol Dial Transplant. 2014;29(11):2043-2053. [26] Nutter F, Khwaja A, Haylor J. Seliciclib inhibits renal hypertrophy but not fibrosis in the rat following subtotal nephrectomy. Nephron Exp Nephrol. 2012;122(3-4): 114-122. [27] Kierulf-Lassen C, Kristensen ML, Birn H,et al. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators. PLoS One. 2015; 10(12): e0146109. [28] Elshiekh M, Kadkhodaee M, Seifi B,et al. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats. Nephrourol Mon. 2015; 7(6):e31152. [29] Chakrabarti S, Syme HM, Brown CA, et al. Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction. Vet Pathol. 2013;50:147–155. [30] 张改华,饶向荣.急性肾损伤:慢性肾脏病进展至终末期肾病的跳板[J].中国中西医结合肾病杂志,2013,14(9): 830-832. [31] Murugan R, Kellum JA. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol. 2011;7:209-217. |
[1] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[2] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[3] | Hao Xiaona, Zhang Yingjie, Li Yuyun, Xu Tao. Bone marrow mesenchymal stem cells overexpressing prolyl oligopeptidase on the repair of liver fibrosis in rat models [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3988-3993. |
[4] | Zhang Lei, Yan Yu, Liu Yin, Xu Long, Yang Xinglei, Liu Yujia. An 8-week aerobic exercise improves obesity-induced myocardial fibrosis: role of nuclear factor-erythroid 2 p45-related factor 2 pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(17): 2650-2656. |
[5] | Hu Sheng, Yuan Haiyan, Hu Meng, Jin Shanhu. Effects of moderate treadmill exercise on alpha-smooth muscle actin and type IV collagen in the liver of type 2 diabetic rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(11): 1723-1727. |
[6] | Li Xuan, Lu Min, Li Mingxing, Ao Meng, Tang Linmei, Zeng Zhen, Hu Jingwei, Huang Zhiqiang, Xuan Jiqing. In vitro multi-modal imaging of magnetic targeted nanoparticles and their targeting effect on hepatic stellate cells [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(4): 566-571. |
[7] | Zhu Shoulei, Yang Jiandong, Cai Jun, Zhang Yujie, Tian Yuan. Mechanism by which allicin inhibits proliferation and migration but promotes apoptosis of human fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(35): 5662-5667. |
[8] | Cheng Xue, Fang Hong, Zhang Yunke, Wu Yingen. Interventional mechanism of Feibi prescription on extracellular matrix transformation in a mouse model of pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5038-5043. |
[9] | Li Qinwen, Liang Jie, Wang Dongmei, Shang Zhenghui. Fibrotic changes in rat dorsal root ganglion following chronic sciatic nerve compression [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(29): 4686-4691. |
[10] |
Wu Zhen, Ma Wei, Zang Chenghao, Liu Kuangpin, Liu Wei, Liu Jie, Liang Yu, Li Chunyan, Chen Zhiming, Ru Jin, Fan Chuming, Yang Jinwei, Guo Jianhui, Li Liyan.
Protective effect of notoginsenoside R1 on carbon tetrachloride-induced liver fibrosis in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(26): 4213-4217. |
[11] | Yin Lian, Zhao Jin, Lei Xuemei, Li Miaomiao, Wang Kun, Zhang Tingran, Luo Jiong. Effect of exercise-induced irisin on myocardial fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(23): 3730-3736. |
[12] | Liu Yuetong, Wang Qin, Yang Ye, Zhu Jun, Abulikemu•Tuerdi. Effects of 1,25(OH)2D3 on microRNA-130b and transforming growth factor beta 1 in renal tissue of rat models of diabetic nephropathy [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(2): 248-253. |
[13] | Yang Ning, Huang Tao, Liu Xiaoran, Zhou Yue, Wang Ruiyuan, Li Junping. Changes of fibrotic factors in the recovery process of skeletal muscle strain [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(17): 2667-2674. |
[14] | Feng Hefei, Guo Tao, Huang Min, Su Wang, Xia Deyue, Peng Lan, Yu Yunbo, Sun Jie. Improvement for the construction of renal interstitial fibrosis model with unilateral ureteral obstruction in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(17): 2706-2711. |
[15] | Li Hongchao, Wang Xi, Li Li, Li Zhenyu, Zang Zusheng, Zhou Heng, Wang Xiaojin, Chen Chengwei, Cheng Mingliang, Wu Jun, Jin Yinpeng, Fu Qingchun. Therapeutic effect of human adipose stem cells derived exosomes on carbon tetrachloride induced liver fibrosis in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(13): 1996-2004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||