Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (42): 6832-6837.doi: 10.3969/j.issn.2095-4344.2015.42.020
Previous Articles Next Articles
Yuan De-chao1, 2, Chen Zhu1, Feng Da-xiong2, Feng Gang1, 2
Online:
2015-10-08
Published:
2015-10-08
Contact:
Feng Gang, Professor, Master’s supervisor, Institute of Tissue Engineering and Stem Cells, Second Clinical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, Sichuan Province, China; Sichuan Medical University, Luzhou 646000, Sichuan Province, China
About author:
Yuan De-chao, Studying for master’s degree, Physician, Institute of Tissue Engineering and Stem Cells, Second Clinical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, Sichuan Province, China; Sichuan Medical University, Luzhou 646000, Sichuan Province, China
Supported by:
the National Natural Science Foundation of China, No. 81171472, 81201407; the Innovation Team Program of Sichuan Provincial Education Department, No. 13TD0030; the Major Culture Project of Sichuan Provincial Education Department, No. 15CZ0021; the Scientific Support Plan of Nanchong City, No. 14A0021
Yuan De-chao, Chen Zhu, Feng Da-xiong, Feng Gang. How to build a tissue-engineered intervertebral disc annulus fibrosus that is more close to the natural one?[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(42): 6832-6837.
[1] 冯刚.椎间盘退行性变疾病不同临床期生物治疗策略[J].西部医学. 2013;25(8):1121-1127. [2] 冯刚.椎间盘组织工程研究的挑战与对策[J].西部医学,2010, 22(8):1377-1379. [3] Sharifi S,Bulstra SK,Grijpma DW,et al.Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J Tissue Eng Regen Med.2014; 3(13):53-67. [4] Silva-Correia J,Correia SI,Oliveira JM,et al. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv. 2013;31(8): 1514-1531. [5] Jin L, Shimmer AL,Li X. The challenge and advancement of annulus fibrosus tissue engineering. Eur Spine J. 2013;22(5): 1090-1100. [6] Gantenbein B, Illien-Junger S, Chan SC, et al.Organ culture bioreactors - platforms to study human intervertebral disc degeneration and regenerative therapy.Curr Stem Cell Res Ther.2015;3(13):1574-1582 . [7] Wu XL, Wu LJ, Zheng RM, et al. Biomechanical characteristics analysis on discs with coflex fixation on the different segments of lower lumbar spine. Zhongguo Gu Shang. 2014;27(11):938-942. [8] Blanquer SB, Grijpma DW,Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev.2014;3(12):48-55. [9] Gebhard H,Bowles R,Dyke J,et al.Total disc replacement using a tissue-engineered intervertebral disc in vivo: New animal model and initial results. Evid Based Spine Care J. 2010;1(2):62-66. [10] Zhu D, Chen S, Dong X, et al. An observation on the micro-structure and form of annulus fibrosus of lumbar interverbral disc 4, 5. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2007;24(4):842-845. [11] Ayturk UM, Garcia JJ, Puttlitz CM. The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine.J Biomech Eng.2010;132(6): 1007-1018. [12] Kular JK, Basu S,Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng.2014;45(5):112-122. [13] Hosseinkhani M, Mehrabani D, Karimfar MH, et al. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg.2014;3(1):3-7. [14] Shao X, Hunter CJ. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J Biomed Mater Res A.2007;82(3):701-710. [15] Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (hanfs) amalgam. Tissue Eng Part A.2008;14(9):1527-1537. [16] 赵鑫,黄师,严宁,等. 藻酸盐凝胶支架在生物学修复椎间盘退行性变中的应用[J]. 中国组织工程研究与临床康复, 2008,12(1): 73-76. [17] Guillaume O, Daly A, Lennon K, et al. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: Effect of tgf-beta3 supplementation and oxygen culture conditions. Acta Biomater.2014;10(5):1985-1995. [18] Chang G, Kim HJ, Vunjak-Novakovic G, et al. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J Biomed Mater Res A. 2010; 92(1): 43-51. [19] Chang G, Kim HJ, Kaplan D, et al. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J.2007;16(11): 1848-1857. [20] Park SH, Gil ES, Mandal BB, et al. Annulus fibrosus tissue engineering using lamellar silk scaffolds. J Tissue Eng Regen Med.2012;6(3):24-33. [21] Bhattacharjee M, Miot S, Gorecka A,et al.Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: Towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8(9):3313-3325. [22] Blanquer SB, Sharifi S,Grijpma DW.Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering. J Appl Biomater Funct Mater. 2012; 10(3): 177-184. [23] Attia M, Santerre JP, Kandel RA. The response of annulus fibrosus cell to fibronectin-coated nanofibrous polyurethane-anionic dihydroxyoligomer scaffolds. Biomaterials. 2011;32(2):450-460. [24] Hegewald AA, Medved F, Feng D, et al.Enhancing tissue repair in annulus fibrosus defects of the intervertebral disc: Analysis of a bio-integrative annulus implant in an in-vivo ovine model.J Tissue Eng Regen Med. 2013;11(15):79-91. [25] Wismer N, Grad S, Fortunato G, et al.Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: Effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A. 2014; 20(3):672-682. [26] Wan Y, Feng G, Shen FH, et al. Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration. Macromol Biosci.2007; 7(11): 1217-1224. [27] 李玉东,徐源,周强,等. 聚乳酸-聚己内酯组织工程纤维环支架的制备及其性能研究[J]. 第三军医大学学报,2014;36(9): 914-918. [28] Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials.2015;42(11): 11-19. [29] Wan Y, Feng G, Shen FH, et al. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials.2008;29(6): 643-652. [30] Park SH, Gil ES, Cho H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A. 2012;18(5-6): 447-458. [31] Sakai D, Andersson GB.Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat Rev Rheumatol.2015;2(24):243-256. [32] Rodrigues-Pinto R,Richardson SM,Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J. 2014;23(9):1803-1814. [33] Gantenbein B,Calandriello E,Wuertz-Kozak K,et al.Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia. BMC Musculoskelet Disord. 2014;15(7):422-429. [34] Hegewald AA, Cluzel J, Kruger JP, et al.Effects of initial boost with tgf-beta 1 and grade of intervertebral disc degeneration on 3d culture of human annulus fibrosus cells. J Orthop Surg Res.2014; 9(21):73-79. [35] Chuah YJ, Lee WC, Wong HK, et al.Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study. Exp Cell Res. 2015; 331(1):176-182. [36] Acosta FL Jr., Metz L, Adkisson HD, et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A.2011; 17(23-24): 3045-3055. [37] Buhrmann C, Busch F, Shayan P, et al. Sirtuin-1 (sirt1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J Biol Chem. 2014;289(32): 22048-22062. [38] Shen J, Gao Q, Zhang Y, et al.Autologous plateletrich plasma promotes proliferation and chondrogenic differentiation of adiposederived stem cells. Mol Med Rep. 2015;11(2): 1298-1303. [39] 冯均伟,王跃,吕波,等. 骨髓间充质干细胞体外诱导成软骨细胞的动态观察[J].中国组织工程研究,2013;17(36):6409-6416. [40] 张清林,吕惠成,吴一民. 转化生长因子1联合骨形态发生蛋白2诱导骨髓间充质干细胞体外向软骨细胞的分化[J].中国组织工程研究与临床康复,2010,14(24):4371-4375. [41] Toguchida J. Advancement of regenerative medicine in the locomotive system using ips cells. Clin Calcium.2014;24(4): 587-592. [42] See EY, Toh SL, Goh JC. Simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell sheets and silk scaffolds for annulus fibrosus regeneration.J Tissue Eng Regen Med.2012;6(7):528-535. [43] Guzzo RM, Scanlon V, Sanjay A, et al.Establishment of human cell type-specific ips cells with enhanced chondrogenic potential.Stem Cell Rev. 2014;10(6):820-829. [44] Griffin M, Iqbal SA, Bayat A. Exploring the application of mesenchymal stem cells in bone repair and regeneration.J Bone Joint Surg Br. 2011;93(4):427-434. [45] Leung VY, Tam V, Chan D, et al. Tissue engineering for intervertebral disk degeneration. Orthop Clin North Am.2011; 42(4): 575-583. [46] O'Halloran DM, Pandit AS. Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng. 2007; 13(8): 1927-1954. [47] 胡稷杰,裴国献,全大萍,等. 新型聚乳酸-羟基乙酸(PLGA)支架的细胞相容性研究[J]. 中华创伤骨科杂志. 2005; 7(4): 358-362. [48] Henry N, Colombier P, Lescaudron L, et al.Regenerative medicine of the intervertebral disc: From pathophysiology to clinical application. Med Sci (Paris). 2014;30(12):1091-1100. |
[1] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[2] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[3] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[4] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[5] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[6] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[7] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[8] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[9] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[10] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[11] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[12] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[13] | Guan Qian, Luan Zuo, Ye Dou, Yang Yinxiang, Wang Zhaoyan, Wang Qian, Yao Ruiqin. Morphological changes in human oligodendrocyte progenitor cells during passage [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1045-1049. |
[14] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
[15] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||