Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (30): 4876-4881.doi: 10.3969/j.issn.2095-4344.2015.30.023
Previous Articles Next Articles
Ren Shi-you1, Jiang Chang-qing2, Zhang Wen-tao2
Online:
2015-07-16
Published:
2015-07-16
Contact:
Zhang Wen-tao, Chief physician, Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
About author:
Ren Shi-you, Studying for master’s degree, Clinical College of Anhui Medical University & Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
CLC Number:
Ren Shi-you, Jiang Chang-qing, Zhang Wen-tao. Different materials for rotator cuff repair augmentation: intensity, degradation rate and acidity degradation products[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(30): 4876-4881.
[1] Kinsella K,Velkoff VA.An Aging World: 2001.Washington,DC: US Government Printing Office;2001.
[2] Harryman DT,Mack LA,Wang KY,et al.Repairs of the rotator cuff.Correlation of functional results with integrity of the cuff.J Bone Joint Surg Am.1991;73:982-989.
[3] Burkhead WZ Jr,Schiffern SC,Krishnan SG.Use of graft jacket as an augmentation for massive rotator cuff tears. Semin Arthro.2007;18:11-18.
[4] Badhe SP,Lawrence TM,Smith FD,et al.An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg.2008;17:S35-S39.
[5] Encalada-Diaz I,Cole BJ,MacGillivray JD,et al.Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elbow Surg.2011;20:788-794.
[6] Iwata Y,Morihara T,Tachiiri H,et al.Behavior of host and graft cells in the early remodeling process of rotator cuff defects in a transgenic animal model. J Shoulder Elbow Surg.2008;17(1 Suppl):101S-107S.
[7] Paoloni JA,Appleyard RC,Nelson J,et al.Topical glyceryl trinitrate application in the treatment of chronic supraspinatus tendinopathy: a randomized, double-blinded, placebocontrolled clinical trial.Am J Sports Med.2005; 33:806-813.
[8] Cho NS,Yi JW,Rhee YG.Arthroscopic biceps augmentation for avoiding undue tension in repair of massive rotator cuff tears. Arthroscopy.2009;25:183-191.
[9] Rhee YG,Cho NS,Lim CT,et al.Bridging the gap in immobile massive rotator cuff tears: augmentation using the tenotomized biceps.Am J Sports Med.2008;36:1511-1518.
[10] Mori D, Funakoshi N, Yamashita F.Arthroscopic surgery of irreparable large or massive rotator cuff tears with low-grade fatty degeneration of the infraspinatus: patch autograft procedure versus partial repair procedure. Arthroscopy. 2013; 29(12):1911-1921.
[11] Smith MJ,Cook JL,Kuroki K,et al.Comparison of a novel bone-tendon allograft with a human dermis-derived patch for repair of chronic large rotator cuff tears using a canine model. Arthroscopy. 2012;28(2):169-177.
[12] Ozaki J,Fujimoto S,Masuhara K,et al. Reconstruction of chronic massive rotator cuff tears with synthetic materials.Clin Orthop Relat Res.1986,L202:173-183.
[13] Kanbe K,Chiba J,Nakamura A.Histological evaluation after arthroscopic reconstruction of the shoulder using a polytetrafluoroethylene patch for massive rotator cuff tears. Eur J Orthop Surg Traumatol.2013;23 (Suppl 2): S183-S187.
[14] Audenaert E,Van Nuffel J,Schepens A,et al. Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients . Knee Surg Sports Traumatol Arthrosc.2006;14:360-364.
[15] Nada AM,Debnath UK,Robinson DA,et al.Treatment of massive rotator-cuff tears with a polyester ligament (Dacron) augmentation clinical outcome. J Bone Joint Surg Br. 2010; 92B:1397-1402.
[16] Russo R,Lombardi LV,Visconti V,et al.Massive rotator cuff tear treated with a synthetic patch: a case report 16 years after surgery. Musculoskelet Surg.2011;95(Suppl 1): S83-S87.
[17] Ciampi P,Scotti C,Nonis A,et al.The Benefit of Synthetic Versus Biological Patch Augmentation in the Repair of Posterosuperior Massive Rotator Cuff Tears A 3-Year Follow-up Study.Am J Sports Med.2014;42:1169-1175.
[18] Cole BJ, Gomoll AH,Yanke A ,et al.Biocompatibility of a polymer patch for rotator cuff repair.Knee Surg Sports Traumatol Arthrosc.2007;15:632-637.
[19] Santoni BG,McGilvray KC,Lyons AS,et al. Biomechanical analysis of an ovine rotator cuff repair via porous patch augmentation in a chronic rupture model.Am J Sports Med. 2010; 38:679-686.
[20] Kimura A,Aoki M,Fukushima S,et al.Reconstruction of a defect of the rotator cuff with polytetrafluoroethylene felt graft - Recovery of tensile strength and histocompatibility in an animal model.J Bone Joint Surg Br.2003;85B: 282-287.
[21] Encalada-Diaz I,Cole BJ,MacGillivray JD,et al.Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up.J Shoulder Elbow Surg.2011;20(5):1-14.
[22] Ronquillo JC,Lam P,Murrell GA.Arthroscopic ePTFE Patch Repair for Irreparable Rotator Cuff Tears Part II: Preliminary Clinical Results.Tech Should Surg.2013;14:33-41.
[23] Post M.Rotator cuff repair with carbon-filament-a preliminary- report of 5 cases.Clin Orthop Relat Res.1985;196:154-158.
[24] Visuri T,Kiviluoto O,Eskelin M.Carbon fiber for repair of the rotator cuff. A 4-year follow-up of 14 cases.Acta Orthop Scand. 1991;62:356-359.
[25] King JB,Bulstrode C.Polylacetate-coated carbon-fiber in extra-articular reconstruction of the unstable knee.Clin Orthop Relat Res.1985;196:139-142.
[26] Amis AA,Kempson SA,Campbell JR,et al.Anterior cruciate ligament replacement. Biocompatibility and biomechanics of polyester and carbon fibre in rabbits. J Bone Joint Surg Br. 1988;70:628-634.
[27] Audenaert E,Van Nuffel J,Schepens A,et al.Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc.2006;14:360-364.
[28] Tuite DJ,Renstrom PA,O’Brien M. The aging tendon .Scand J Med Sci Sports.1997;7:72-77.
[29] Gumina S,Patti AM,Vulcano A,et al.Culture of human rotator cuff cells on orthobiologic support (porcine small intestinal submucosa).Chir Organi Mov.2009;93 Suppl 1:S65-S70.
[30] Shea KP,McCarthy MB,Ledgard F,et al.Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study.Arthroscopy.2010;26: 1181-1188.
[31] Zalavras CG, Gardocki R, Huang E, et al. Reconstruction of large rotator cuff tendon defects with porcine small intestinal submucosa in an animal model .J Shoulder Elbow Surg.2006;15:224-231.
[32] Perry SA,Gupta RR,Van Kleunen J,et al.Use of small intestine submucosa in a rat model of acute and chronic rotator cuff tear.J Shoulder Elbow Surg.2007;16:179S-183S.
[33] Dejardin LM,Arnoczky SP,Ewers BJ,et al.Tissue-engineered rotator cuff tendon using porcine small intestine submucosa- Histologic and mechanical evaluation in dogs.Am J Sports Med.2001;29:175-184.
[34] Nicholson GP,Breur GJ,Van Sickle D,et al.Evaluation of a cross-linked acellular porcine dermal patch for rotator cuff repair augmentation in an ovine model.J Shoulder Elbow Surg.2007;16:184S-190S.
[35] Xu H,Sandor M,Qi S,et al.Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair.J Shoulder Elbow Surg.2012;21(5):580-588.
[36] Wong I,Burns J,Snyder S.Arthroscopic GraftJacket repair of rotator cuff tears.J Shoulder Elbow Surg.2010;19(2 Suppl): 104-109.
[37] Barber FA,Burns JP,Deutsch A, et al.A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8-15.
[38] Murray MM,Spindler KP,Abreu E,et al.Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament.J Orthop Res.2007;25:81-91.
[39] Bi L, Cheng W, Fan H,et al. Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet rich plasma. Biomaterials.2010;31: 3201-3211.
[40] Jo CH,Kim JE,Yoon KS,et al.Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study.Am J Sports Med. 2011;39(10):2082-2090.
[41] Barber FA,Hrnack SA,Snyder SJ,et al.Rotator Cuff Repair Healing Influenced by Platelet-Rich Plasma Construct Augmentation. Arthroscopy.2011;27(8):1029-1035.
[42] Castricini R,Longo UG,De Benedetto M,et al.Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial.Am J Sports Med. 2011;39(2): 258-265.
[43] Moraes VY,Lenza M,Tamaoki MJ,et al.Platelet-rich therapies for musculoskeletal soft tissue injuries.Cochrane Database Syst Rev.2013;12:CD010071.
[44] Derwin KA,Baker AR,Spragg RK,et al.Commercial extracellular matrix scaffolds for rotator cuff tendon repair.Biomechanical, biochemical, and cellular properties.J Bone Joint Surg Am.2006;88:2665-2672.
[45] Chaudhury S,Holland C,Thompson MS,et al.Tensile and shear mechanical properties of rotator cuff repair patches.J Shoulder Elbow Surg.2012;21:1168-1176.
[46] Baker AR,McCarron JA,Tan CD,et al. Does augmentation with a reinforced fascia patch improve rotator cuff repair outcomes?Clin Orthop Relat Res.2012;470:2513-2521.
[47] Zheng MH,Chen J,Kirilak Y,et al.Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation.J Biomed Mater Res.2005;Part B 73B:61-67.
[48] Gilbert TW,Freund JM,Badylak SF.Quantification ofDNA in biologic scaffold materials.J Surg Res.2009;152:135-139.
[49] Valentin JE,Badylak JS, McCabe GP,et al.Extracellular matrix bioscaffolds for orthopaedic applications -A comparative histologic study.J Bone Joint Surg Am.2006; 88A:2673-2686.
[50] Barber FA,Burns JP,Deutsch A,et al.A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8-15.
[51] Sclamberg SG,Tibone JE,Itamura JM,et al.Six month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa.J Shoulder Elbow Surg.2004;13:538-541.
[52] Iannotti JP,Codsi MJ,Kwon YW,et al. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears - A randomized,controlled trial.J Bone Joint Surg Am.2006;88A:1238-1244.
[53] Phipatanakul WP,Petersen SA.Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears.Am J Orthop (Belle Mead NJ).2009;38: 572-575.
[54] Yokoya S,Mochizuki Y,Nagata Y,et al.Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model.Am J Sports Med.2008; 36: 1298-1309.
[55] Moffat KL,Kwei AS,Spalazzi JP,et al.Novel nanofiber-based scaffold for rotator cuff repair and augmentation.Tissue Eng. 2009;Part A 15:115-126.
[56] Xie JW,Li XR,Lipner J,et al.“Aligned-to-random”nanofiber scaffolds for mimicking the structure of the tendon-tobone insertion site.Nanoscale.2010;2:923-926.
[57] Beason DP,Connizzo BK, Dourte LM,et al. Fiberaligned polymer scaffolds for rotator cuff repair in a rat model.J Shoulder Elbow Surg.2012;21:245-250.
[58] Yokoya S,Mochizuki Y,Natsu K,et al.Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model.Am J Sports Med. 2012;40:1259-1268.
[59] Srouji S,Kizhner T,Suss-Tobi E,et al.3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med.2008; 19:1249- 1255.
[60] Sahoo S,Ang LT,Goh JC,et al.Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications.J Biomed Mater Res.2010;93A:1539-1550.
[61] Li XR,Xie JW,Lipner J,et al. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to- Bone Insertion Site.Nano Lett.2009;9:2763-2768.
[62] Jo CH, Kim JE,Yoon KS,et al.Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study.Am J Sports Med.2011;39:2082-2090.
[63] Isaac C,Gharaibeh B,Witt M,et al. Biologic approaches to enhance rotator cuff healing after injury.J Shoulder Elbow Surg.2012;21:181-190.
[64] Sahoo S,Ouyang H,Goh JC,et al.Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering.Tissue Eng.2006;12:91-99.
[65] Hakimi O,Chaudhury S,Murphy R,et al. Differential growth on sutures of tendon cells derived from torn human rotator cuff.J Biomed Mater Res B Appl Biomater.2012;100: 685-692.
[66] Smith MJ,Smith DC,White KL Jr,et al.Immune response testing of electrospun polymers: an important consideration in the evaluation of biomaterials.J Eng Fibers Fabr.2007; 2: 41-47.
[67] Saino E,Focarete ML,Gualandi C,et al.Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules.2011;12:1900-1911.
[68] MacGillivray JD,Fealy S,Terry MA,et al.Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats.J Shoulder Elbow Surg.2006; 15:639-644.
[69] Taylor ED,Nair LS,Nukavarapu SP,et al.Novel nanostructured scaffolds as therapeutic replacement options for rotator cuff disease .J Bone Joint Surg Am.2010;92A: 170-179.
[70] Hakimi O,Murphy R,Stachewicz U,et al.An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair.Eur Cell Mater.2012; 24: 344-357.
[71] Meyer F,Wardale J, Best S,et al.Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.J Orthop Res.2012;30:864-871.
[72] Taylor MS,Daniels AU,Andriano KP,et al.Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products.J Appl Biomater.1994;5:151-157.
[73] Vaquette C,Fan W,Xiao Y,et al.A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials.2012;33:5560-5573.
[74] Rnjak-Kovacina J,Weiss AS.Increasing the pore size of electrospun scaffolds .Tissue Eng. Part B Rev.2011; 17:365- 372.
[75] Proctor CS.Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device.J Shoulder Elbow Surg. 2014;23(10):1508-1513.
|
[1] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[2] | Liu Zhigang, Guo Qinggong, Chen Jingtao. Effect of Capparis spinosa total alkaloid on proliferation and apoptosis of nucleus pulposus cells in an intervertebral disc degeneration rat model [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(11): 1699-1704. |
[3] | Luo Yaxin, Bi Haoran, Chen Xiaoxu, Yang Kun. Extracellular matrix and tissue engineering regeneration and repair [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(11): 1785-1790. |
[4] | Li Junqi, Tian Guangzhao, Chen Mingxue, Wang Hao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Li Ming, Guo Quanyi. Regulatory effect of acellular cartilage extracellular matrix on phenotype of mouse macrophage line [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(10): 1512-1516. |
[5] | Guo Haoyu, Li Weiquan, Liu Kaiyuan, Xiao Ruifen, Sun Denglong, Xi Jiaoya. Recent research progress in construction of biomimetic engineered cardiac tissue based on extracellular matrix [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(10): 1577-1584. |
[6] | Wu Ming, Zhang Yan. Related factors regulating osteogenic differentiation of bone marrow mesenchymal stem cells through Wnt/β-catenin signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(1): 116-122. |
[7] | Liu Chunyu, Han Xiaoyan, Wang Lin. Basic science related to tendinopathy: microbiomechanics and stress shielding [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(5): 766-772. |
[8] | Wang Zhihao, Wu Cong, Wu Sihua, Shi Hongcan. Application and characteristics of decellularization technology in tissue engineered trachea [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(35): 5695-5700. |
[9] | Yang Wenxiao, Yang Ning, Liu Yao. Immunomodulation of extracellular matrix and its role in tissue regeneration [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(35): 5701-5707. |
[10] | He Jing, Ao Qiang. Research hotspots in tissue decellularization method for manufacturing extracellular matrices [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(34): 5413-5420. |
[11] | Cheng Xue, Fang Hong, Zhang Yunke, Wu Yingen. Interventional mechanism of Feibi prescription on extracellular matrix transformation in a mouse model of pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(31): 5038-5043. |
[12] | Liu Guoming, Wang Qinfen, Lin Kefeng, Zhou Shiguo, Chen Zuxing, Lin Shishui. Whole body application of nerve growth factor promotes early healing of tibial shaft fracture and improves expression of bone morphogenetic protein-2 and vascular endothelial growth factor in rats [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(29): 4680-4685. |
[13] | Zhang Weizhong, Li Lei, He He, He Xin. Application and significance of nanofibrous macroporous scaffold preparation technology for bone tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(28): 4437-4444. |
[14] | Shi Jun, Yang Lin, Guo Zhibin, Cui Yutao, Liu He. How does extracellular matrix-based growth factor delivery system promote osteogenesis? [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(28): 4445-4451. |
[15] | Chen Leyi, Lü Xiaolin, Xu Wenan. Scaffolds for dental pulp regeneration and revascularization [J]. Chinese Journal of Tissue Engineering Research, 2020, 24(28): 4452-4458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||