[1] SHI W, SUN M, HU X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3d printing to repair cartilage injury in vitro and in vivo. Adv Mater. 2017;29:1701089.
[2] JIA S, WANG J, ZHANG T, et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl Mater Inter. 2018;10(24):20296-20305.
[3] ZHAI C, FEI H, HU J, et al. Repair of articular osteochondral defects using an integrated and biomimetic trilayered scaffold. Tissue Eng Part A. 2018;24(21-22):1680-1692.
[4] MORAN CJ, PASCUAL-GARRIDO C, CHUBINSKAYA S, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96(6):336-344.
[5] CHEN L, DENG C, LI J, et al. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction - Science Direct. Biomaterials. 2019;196:138-150.
[6] MENG Y, CAO J, CHEN Y, et al. 3D printing of a poly(vinylalcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy. J Mater Chem B. 2020; 8:677-690.
[7] DRURY JL, MOONEY DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-4351.
[8] SPILLER KL, MAHER SA, LOWMAN AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011;17:281-299.
[9] XIE J, WANG W, ZHAO R, et al. Fabrication and characterization of microstructure- controllable COL-HA-PVA hydrogels for cartilage repair. J Mater Sci Mater Med. 2021;32:100.
[10] CHEN K, CHEN G, WEI S, et al. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater Sci Eng C Mater Biol Appl. 2018;91:579-588.
[11] KOOSHA M, RAOUFI M, MORAVVEJ H. One-pot reactive electrospinning of chitosan/ PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf B. 2019;(179):270-279.
[12] CHEN K, LIU J, YANG X, et al. Preparation, optimization and property of PVA-HA/PAA composite hydrogel. Mater Sci Eng C Mater Biol Appl. 2017;78:520-529.
[13] ZHOU H, WANG Z, CAO H, et al. Genipin-crosslinked polyvinyl alcohol /silk fibroin /nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. J Biomater Sci Polym Ed. 2019;30:1604-1619.
[14] MARRELLA A, LAGAZZO A, DELLACASA E, et al. 3D porous gelatin/ PVA hydrogel as meniscus substitute using alginate micro- particles as porogens. Polymers (Basel). 2018;10(4):380.
[15] GEORGOPOULOU A, PAPADOGIANNIS F, BATSALI A, et al. Chitosan /gelatin scaffolds support bone regeneration. J Mater Sci Mater Med. 2018;29(5):61-73.
[16] YLA-OUTINEN L, HARJU V, JOKI T, et al. Screening of hydrogels for human pluripotent stem cell-derived neural cells: hyaluronan-polyvinyl alcohol-collagen- based interpenetrating polymer network provides an improved hydrogel scaffold. Macromol Biosci. 2019;19:e1900096.
[17] PARMAR PA, CHOW LW, ST-PIERRE JP, et al. Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials. 2015;54:213-225.
[18] POHAN G, MATTIASSI S, YAO Y, et al. Effect of ethylene oxide sterilization on polyvinyl alcohol hydrogel compared with gamma radiation. Tissue Eng Part A. 2020;26:1077-1090.
[19] WIDUCHOWSKI W, WIDUCHOWSKI J, TRZASKA T. Articular cartilage defects: study of 25124 knee arthroscopies. Knee. 2007;14(3):177-182.
[20] HJELLE K, SOLHEIM E, STRAND T, et al. Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy. 2002;18(7):730-734.
[21] 易守红,郭林,陈光兴,等.2479例膝关节镜手术患者关节软骨损伤的流行病学分布特征[J].第三军医大学学报,2011,33(9):957-960.
[22] MEINHART J, FUSSENEGGER M, HÖBLING W. Stabilization of fibrin‐chondrocyte constructs for cartilage reconstructon. Ann Plat Surg. 1999;42(6):673-678.
[23] CAMP CL, STUART MJ, KRYCH AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health. 2014;6:265-273.
[24] XU J, FENG Q, LIN S, et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials. 2019;(210):210.
[25] MILLER BS, STESDMAN JR, BRIGGS KK, et al. Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg. 2004;17(1):13-17.
[26] DU Y, LIU H, YANG Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials. 2017;137:37-48.
[27] MOW VC, RATCLIFFE A. Structure and function of articular cartilage and meniscus//MOW VC, HAYES WC. Basic Orthopaedic Biomechanics. Lippincott-Raven Publishers: Philadelphia, 1997:113-177.
[28] 金岩.组织工程原理与技术[M].西安:第四军医大学出版社,2004: 3-17.
[29] KON E, ROBINSON D, SHANI J, et al. Reconstruction of large osteochondral defects using a hemicondylar aragonite-based implant in a caprine model. Arthroscopy. 2020;36(7):1884-1894.
[30] WEI X, LIU B, LIU G, et al. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res Ther. 2019; 10:72.
[31] SU W, HU Y, ZENG M, et al. Design and evaluation of nano-hydroxyapatite /poly (vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid) /nano- hydroxyapatite /poly(vinyl alcohol) scaffolds for cartilage repair. J Orthop Surg Res. 2019;14:446.
[32] GORCZYCA G, TYLINGO R, SZWEDA P, et al. Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohyd Polym. 2014; 12:901-911.
[33] GILARSKA A, LEWANDOWSKA-LANCUCKA J, GUZDEK-ZAJAC K, et al. Bioactive yet antimicrobial structurally stable collagen/ chitosan/ lysine functionalized hyaluronic acid - based injectable hydrogels for potential bone tissue engineering applications. Int J Biol Macromol. 2019;155: 938-950.
[34] FRAYSSINET A, PETTA D, ILLOUL C, et al. Extracellular matrix-mimetic composite hydrogels of cross-linked hyaluronan and fibrillar collagen with tunable properties and ultrastructure. Carbohyd Polym. 2020; 236:116042.
[35] TANG D, TARE RS, YANG LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;(83):363-382. |