[1] AL MARUF DSA, GHOSH YA, XIN H, et al. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel). 2022;14(19):4186.
[2] DEC P, MODRZEJEWSKI A, PAWLIK A. Existing and Novel Biomaterials for Bone Tissue Engineering. Int J Mol Sci. 2022;24(1):529.
[3] GRABER E, REITER EO, ROGOL AD. Human Growth and Growth Hormone: From Antiquity to the Recominant Age to the Future. Front Endocrinol (Lausanne). 2021;12:709936.
[4] BAMBA V, KANAKATTI SHANKAR R. Approach to the Patient: Safety of Growth Hormone Replacement in Children and Adolescents. J Clin Endocrinol Metab. 2022;107(3):847-861.
[5] 朱怀安,尹苗,陈婉丽,等.基因重组人生长激素对骨髓基质细胞增殖与成骨性分化的影响[J].临床口腔医学杂志,2018,34(3):131-134.
[6] WANG JR, AHMED SF, GADEGAARD N, et al. Nanotopology potentiates growth hormone signalling and osteogenesis of mesenchymal stem cells. Growth Horm IGF Res. 2014;24(6):245-250.
[7] TAIHI I, PILON C, COHEN J, et al. Efficient isolation of human gingival stem cells in a new serum-free medium supplemented with platelet lysate and growth hormone for osteogenic differentiation enhancement. Stem Cell Res Ther. 2022;13(1):125.
[8] MOHANRAM Y, ZHANG J, TSIRIDIS E, et al. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology. 2020;72(5):715-730.
[9] ZHANG S, ZHANG X, LI Y, et al. Clinical Reference Strategy for the Selection of Treatment Materials for Maxillofacial Bone Transplantation: A Systematic Review and Network Meta-Analysis. Tissue Eng Regen Med. 2022;19(3): 437-450.
[10] JANEBODIN K, HORST OV, IERONIMAKIS N, et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011;6(11):e27526.
[11] AL-MASWARY AA, O’REILLY M, HOLMES AP, et al. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS One. 2022;17(11): e0277134.
[12] HATORI A, FUJII Y, KAWASE-KOGA Y, et al. VCAM-1 and GFPT-2: Predictive markers of osteoblast differentiation in human dental pulp stem cells. Bone. 2023;166:116575.
[13] ZHANG Z, OH M, SASAKI JI, et al. Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death Dis. 2021;12(7):644.
[14] PERIĆ KAČAREVIĆ Ž, RIDER P, ALKILDANI S, et al. An introduction to bone tissue engineering. Int J Artif Organs. 2020;43(2):69-86.
[15] CAO S, HAN J, SHARMA N, et al. In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells. Materials (Basel). 2020;13(14):3057.
[16] DI TINCO R, SERGI R, BERTANI G, et al. Effects of a Novel Bioactive Glass Composition on Biological Properties of Human Dental Pulp Stem Cells. Materials (Basel). 2020;13(18):4049.
[17] GU Y, ZHUANG R, XIE X, et al. Osteogenic stimulation of human dental pulp stem cells with self-setting biphasic calcium phosphate cement. J Biomed Mater Res B Appl Biomater. 2020;108(4):1669-1678.
[18] YAMADA Y, NAKAMURA-YAMADA S, KUSANO K, et al. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. Int J Mol Sci. 2019;20(5):1132.
[19] FAGEEH HN. Preliminary Evaluation of Proliferation, Wound Healing Properties, Osteogenic and Chondrogenic Potential of Dental Pulp Stem Cells Obtained from Healthy and Periodontitis Affected Teeth. Cells. 2021; 10(8):2118.
[20] KARAMZADEH R, ESLAMINEJAD MB, AFLATOONIAN R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. 2012;(69):4372.
[21] YU Z, GAUTHIER P, TRAN QT, et al. Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts. J Stem Cell Res Ther. 2015;5(7):292.
[22] 杨俊辉,罗金莉,袁小平.人生长激素对人牙周膜干细胞增殖及成骨分化的影响[J].中国组织工程研究,2021,25(25):3956-3961.
[23] KOFFI KA, DOUBLIER S, RICORT JM, et al. The Role of GH/IGF Axis in Dento-Alveolar Complex from Development to Aging and Therapeutics: A Narrative Review. Cells. 2021;10(5):1181.
[24] LINDSEY RC, MOHAN S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44-55.
[25] CRIPPA GE, BELOTI MM, CARDOSO CR, et al. Effect of growth hormone on in vitro osteogenesis and gene expression of human osteoblastic cells is donor-age-dependent. J Cell Biochem. 2008;104(2):369-376.
[26] FENG J, MENG Z. Insulin growth factor-1 promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway. Exp Ther Med. 2021;22(2):891.
[27] YUAN Y, DUAN R, WU B, et al. Gene expression profiles and bioinformatics analysis of insulin-like growth factor-1 promotion of osteogenic differentiation. Mol Genet Genomic Med. 2019;7(10):e00921.
[28] BIAN M, YU Y, LI Y, et al. Upregulating the Expression of LncRNA ANRIL Promotes Osteogenesis via the miR-7-5p/IGF-1R Axis in the Inflamed Periodontal Ligament Stem Cells. Front Cell Dev Biol. 2021;9:604400.
[29] 周思佳,姜文学,尤佳.骨缺损修复材料:现状与需求和未来[J].中国组织工程研究,2018,22(14):2251-2258.
[30] TONIETTO L, VASQUEZ AF, DOS SANTOS LA, et al. Histological and structural evaluation of growth hormone and PLGA incorporation in macroporous scaffold of α-tricalcium phosphate cement. J Biomater Appl. 2019;33(6): 866-875.
|