[1] FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14-21.
[2] SIMON P, POMPE W, BOBETH M, et al. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng. 2021;7(6):2255-2267.
[3] GULSAHI A. Osteoporosis and jawbones in women. J Int Soc Prev Community Dent. 2015;5(4):263-267.
[4] PARK JS, PIAO JY, PARK G, et al. Osteoporotic Conditions Influence the Activity of Adipose-Derived Stem Cells. Tissue Eng Regen Med. 2020;17(6):875-885.
[5] AN Y, ZHAO JF, NIE FF, et al. Parathyroid hormone (PTH) promotes ADSC osteogenesis by regulating SIK2 and Wnt4. Biochem Biophys Res Commun. 2019;516(2):551-557.
[6] WANG F, WANG Q, ZHAO Y, et al. Adipose-derived stem cells with miR-150-5p inhibition laden in hydroxyapatite/tricalcium phosphate ceramic powders promote osteogenesis via regulating Notch3 and activating FAK/ERK and RhoA. Acta Biomater. 2023;155:644-653.
[7] 周昊楠.葛根素联合ADSCs支架修复绝经后骨质疏松大鼠胫骨缺损的实验研究及机制初探[D].南宁:广西中医药大学,2020.
[8] 苏之文. ADSCs和HUVECs复合CS-10%P24/nHA支架共培养修复骨质疏松性骨缺损的试验研究[D]. 广州:南方医科大学,2022.
[9] CHEN GQ, XU HD, YAO YF, et al. BMP Signaling in the Development and Regeneration of Cranium Bones and Maintenance of Calvarial Stem Cells. Front Cell Dev Biol. 2020;8:135.
[10] CIPITRIA A, REICHERT JC, EPARI DR, et al. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials. 2013;34(38):9960-9968.
[11] 杨显红.静脉注射hBMP2基因转染ADSCs干预兔骨质疏松性骨折的实验研究[D]. 遵义:遵义医科大学,2020.
[12] 熊坤.渐进性梯度孔径支架联合BMP2-ADSCs及自体PRP凝胶修复骨软骨缺损的实验研究[D].遵义:遵义医科大学, 2020.
[13] 郑毅,赵彤.NLR家族Pyrin域蛋白3炎症小体对糖尿病大鼠牙槽骨缺损愈合的作用及其机制研究[J]. 中国现代医学杂志,2022, 32(10):18-23.
[14] ZHANG HL, ZHOU YL, YU N, et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater. 2019;91:82-98.
[15] MEHRABANI D, KHODAKARAM-TAFTI A, SHATERZADEH-YAZDI H, et al. Comparison of the regenerative effect of adipose-derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dent Traumatol. 2018;34(6):413-420.
[16] KHOJASTEH A, HOSSEINPOUR S, RAD MR, et al. Buccal Fat Pad-Derived Stem Cells in Three-Dimensional Rehabilitation of Large Alveolar Defects: A Report of Two Cases. J Oral Implantol. 2019;45(1):45-54.
[17] CHANG SC, CHUANG HL, CHEN YR, et al. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther. 2003;10(24):2013-2019.
[18] CASTRO-GOVEA Y, CERVANTES-KARDASCH VH, BORREGO-SOTO G, et al. Human bone morphogenetic protein 2-transduced mesenchymal stem cells improve bone regeneration in a model of mandible distraction surgery. J Craniofac Surg. 2012;23(2):392-396.
[19] RAMESH T. Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A. Cell Biochem Funct. 2021;39(1):148-158.
[20] HOU ZY, WANG Z, TAO YX, et al. KLF2 regulates osteoblast differentiation by targeting of Runx2. Lab Invest. 2019;99(2):271-280.
[21] 王红.MicroRNA-21在上颌骨缺损愈合中的作用研究[D].济南:山东大学,2018.
[22] YU T, YOU XM, ZHOU HC, et al. MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA. Aging (Albany NY). 2020; 12(10):9500-9514.
[23] QIAO L, LI CG, LIU D. CircRNA_0048211 protects postmenopausal osteoporosis through targeting miRNA-93-5p to regulate BMP2. Eur Rev Med Pharmacol Sci. 2020;24(7):3459-3466.
|