Chinese Journal of Tissue Engineering Research ›› 2023, Vol. 27 ›› Issue (4): 606-611.doi: 10.12307/2022.966
Previous Articles Next Articles
Liu Hao, Yang Hongsheng, Zeng Zhimou, Wang Liping, Yang Kunhai, Hu Yongrong, Qu Bo
Received:
2021-12-08
Accepted:
2022-01-19
Online:
2023-02-08
Published:
2022-06-23
Contact:
Qu Bo, MD, Associate chief physician, Department of Orthopedics, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
About author:
Liu Hao, Master candidate, Department of Orthopedics, First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
Supported by:
CLC Number:
Liu Hao, Yang Hongsheng, Zeng Zhimou, Wang Liping, Yang Kunhai, Hu Yongrong, Qu Bo. Lumbar MRI vertebral bone quality score to evaluate the severity of osteoporosis in postmenopausal women[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(4): 606-611.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 夏维波,章振林,林华,等.原发性骨质疏松症诊疗指南(2017)[J].中国骨质疏松杂志,2019,25(3):281-309. [2] 智信,陈晓,苏佳灿.绝经后骨质疏松症发病机制研究进展[J].中国骨质疏松杂志,2018,24(11):1510-1513+1534. [3] COSMAN F, DE BEUR SJ, LEBOFF MS, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis Int. 2014;25: 2359-2381. [4] BERGINK AP, RIVADENEIRA F, BIERMA-ZEINSTRA SM, et al. Are bone mineral density and fractures related to the incidence and progression of radio- graphic osteoarthritis of the knee,hip,and hand in elderly men and women? The rotterdam study. Arthritis Heumatol. 2019;71(3):361-369. [5] WATTS NB. Bone quality: getting closer to a definition. J Bone Miner Res. 2002;17:1148-1150. [6] BANDIRALI M, DI LEO G, PAPINI GD, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol. 2015;25(10):2951-2959. [7] SETIAWATI R, DI CHIO F, RAHARDJO P, et al. Quantitative Assessment of Abdominal Aortic Calcifications Using Lateral Lumbar Radiograph, Dual-Energy X-ray Absorptiometry,and Quantitative Computed Tomography of the Spine. J Clin Densitom. 2016;19:242-249. [8] PADLINA I, GONZALEZ-RODRIGUEZ E, HANS D, et al. The lumbar spine age- related degenerative disease influences the BMD not the TBS: the Osteolaus cohort. Osteoporosis Int. 2017;28:909-915. [9] PAIVA LC, FILARDI S, PINTO-NETO AM, et al. Impact of degenerative radiographic abnormalities and vertebral fractures on spinal bone density of women with osteoporosis. Sao Paulo Med J. 2002;120(1): 9-12. [10] EHRESMAN J, PENNINGTON Z, SCHILLING A, et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J. 2020;20(4):556-562. [11] BINKLEY N, KRUEGER D, DE PAPP AE. Multiple vertebral fractures following osteoporosis treatment discontinuation:a case-report after longterm Odanacatib. Osteoporosis Int. 2018;29(4):999-1002. [12] 刘玉林,杨国进,付文举,等.左归丸联合阿法骨化醇、替勃龙对绝经后骨质疏松症患者骨密度及内分泌激素的影响[J].现代中西医结合杂志,2019,28(5):490-493. [13] NEUNER JM, BINKLEY N, SPARAPANI RA, et al. Bone density testing in older women and its association with patient age. J Am Geriatr Soc. 2006;54(3):485-489. [14] 程晓光,袁慧书,程敬亮,等.骨质疏松的影像学与骨密度诊断专家共识[J].中国骨与关节杂志,2020,9(9):666-673. [15] MCNAMARA LM. Perspective on post-menopausal osteoporosis: establishing an interdisciplinary understanding of the sequence of events from the molecular level to whole bone fracture. J R Soc Interface. 2010;7(44):353-372. [16] LINK TM, LANG TF. Axial QCT:Clinical applications and new developments. J Clin Densitom. 2014;17(4):438-448. [17] BAUM T, MÜLLER D, DOBRITZ M, et al. Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif Tissue Int. 2012;90:481-487. [18] 刘梦珂,秦健,李长勤.CT及MRI对骨质疏松的定量研究进展[J].中国矫形外科杂志,2020,28(21):1972-1975. [19] DASH AS, AGARWAL S, MCMAHON DJ, et al. Abnormal microarchitecture and stiffness in postmenopausal women with isolated osteoporosis at the 1/3 radius. Bone. 2020;132:115211. [20] ENGELKE K, STAMPA B, TIMM W, et al. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int. 2012;23:2151-2158. [21] 弓健,程晓光,徐浩. 非骨密度DXA测量对骨折风险的预测骨小梁评分(TBS):ISCD 2015官方共识(第四部分)[J].中国骨质疏杂志, 2018,24(11):1401-1404. [22] 韩晓清,金晖,王春雷,等.TBS在监测及诊断骨质疏松方面的应用价值[J].中国骨质疏松杂志,2015,21(6):749-751+756. [23] BOUSSON V,BERGOT C,SUTTER B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23:1489-1501. [24] 黄淑纾,林华,朱秀芬,等.骨质量与骨质疏松性骨折[J].中华骨质疏松和骨矿盐疾病杂志,2012,5(4):285-291. [25] SHEN W, SCHERZER R, GANTZ M, et al.Relationship between MRI- measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants:the CARDIA study. J Clin Endocrinol Metab. 2012;97(4):1337-1346. [26] 施丹,史晓,王晶晶,等.绝经后女性骨髓脂肪含量与骨密度的相关性[J].中华骨质疏松和骨矿盐疾病杂志,2016,9(1):32-36. [27] 唐睿,汤光宇,诸静其.骨质疏松症骨髓脂肪的影像学研究进展[J].中国骨质疏松杂志,2021,27(2):284-288. [28] CHANG G, BOONE S, MARTEL D, et al. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging. 2017;46(2): 323-337. [29] SHAH LM, HANRAHAN CJ. MRI of spinal bone marrow: part I,techniques and normal age-related appearances. AJR Am J Roentgenol. 2011; 197(6):1298-1308. [30] SHAYGANFAR A, KHODAYI M, EBRAHIMIAN S, et al. Quantitative diagnosis of osteoporosis using lumbar spine signal intensity in magnetic resonance imaging. Br J Radiol. 2019;(1097):20180774. [31] WANG L, YU W, YIN X, et al. Prevalence of Osteoporosis and Fracture in China:The China Osteoporosis Prevalence Study. JAMA Netw Open. 2021;4(8):e2121106. [32] EHRESMAN J, SCHILLING A, YANG X, et al. Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J. 2021; 21(1):20-27. [33] EHRESMAN J,AHMED AK,LUBELSKI D, et al. Vertebral Bone Quality Score and Postoperative Lumbar Lordosis Associated with Need for Reoperation After Lumbar Fusion. World Neurosurg. 2020;140:e247 -e252. [34] EHRESMAN J,SCHILLING A,PENNINGTON Z, et al. A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. Neurosurg. Spine. 2019;20:1-8. [35] PENNINGTON Z, EHRESMAN J, LUBELSKI D, et al. Assessing underlying bone quality in spine surgery patients:a narrative review of dual-energy X-ray absorptiometry(DXA)and alternatives. Spine J. 2021;21(2): 321-331. [36] SCHILLING AT,EHRESMAN J,PENNINGTON Z, et al. Interater and Intrarater Reliability of the Vertebral Bone Quality Score. World Neurosurg. 2021;154:e277-e282. [37] REICHENBACH JR,SCHWESER F,SERRES B, et al. Quantitative Susceptibility Mapping:Concepts and Applications. Clin Neuroradiol. 2015;25:225 -230. [38] WU HZ, ZHANG XF, HAN SM, et al. Correlation of bone mineral density with MRI T2* values in quantitative analysis of lumbar osteoporosis. Arch Osteoporos. 2020;15(1):18. [39] HE L, LIU Z, LIU C, et al. Radiomics Based on Lumbar Spine Magnetic Resonance Imaging to Detect Osteoporosis. Acad Radiol. 2021;28(6): e165-e171. [40] ZHU HL, DING JP, QI YJ. Quantitative evaluation of lumbar spine osteoporosis by apparent diffusion coefficient and signal intensity ratio of magnetic resonance diffusion-weighted magnetic resonance imaging. Zhongguo Gu Shang. 2021;34(8):743-749. [41] KADRI A, BINKLEY N, HERNANDO D, et al. Opportunistic Use of Lumbar Magnetic Resonance Imaging for Osteoporosis Screening. Osteoporos Int. 2021. doi: 10.1007/s00198-021-06129-5. [42] MU S, WANG J, GONG S. Application of Medical Imaging Based on Deep Learning in the Treatment of Lumbar Degenerative Diseases and Osteoporosis with Bone Cement Screws. Comput Math Methods Med. 2021;2021:2638495. [43] OMAR PACHA T, GHASEMI A, OMAR M, et al. Possible Correlation Between Kyphosis of Lumbar Osteoporosis Fractures and the Spinal Signal Intensity Ratio (SSIR). Int J Spine Surg. 2021;15(3):478-484. |
[1] | Guo Yingqi, Gong Xianxu, Zhang Yan, Xiao Han, Wang Ye, Gu Wenguang. Meniscus extrusion and patellofemoral joint cartilage injury and bone marrow lesions: MRI semi-quantitative score [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(4): 600-605. |
[2] | Wu Tong, Yin Caiyun, Zhao Mingzhe, Zhu Yishen. Application of functional peptides for biomedical diagnosis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 478-485. |
[3] | Lin Shi, Yuan Jiayao, Lin Xiancan, Yang Binbin, Wu Jianjun, Dongzhi Zhuoma, Tang Zijia, Yang Zhijie, Wan Lei, Huang Hongxing. Diagnostic value of peripheral blood interferon-gamma and monocyte chemoattractant protein-1 in postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(2): 165-170. |
[4] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[5] | Gao Wenbo, Ma Zongmin, Li Shuxian, Nie Xiuji. Finite element analysis on the effect of implant length and diameter on initial stability under different bone conditions [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(6): 875-880. |
[6] | Shen Song, Xu Bin. Diffuse distribution of bone cement in percutaneous vertebroplasty reduces the incidence of refracture of adjacent vertebral bodies [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 499-503. |
[7] | Ma Jiang, Zhang Di, Zhao Tianyu, Liu Xiaoxiao, Wang Ju, Lu Li, Wang Ying, Jin Song. Mechanism and application prospects of motor imagery in spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(36): 5897-5904. |
[8] | Zhai Xiao, Yang Xinming, Liu Fanghong, Sun Jianwei. Effect of teriparatide combined with risedronate sodium on bone metabolism in patients with osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(35): 5685-5692. |
[9] | Xiang Qianru, Deng Xuejian, Chen Huafeng, Liang Jiamin, An Min, Yang Li. Gene-modified stem cells therapy for osteoporosis: a meta-analysis of preclinical studies [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(31): 5053-5061. |
[10] | Zhang Jian, Lin Jianping, Zhou Gang, Fang Yehan, Wang Benchao, Wu Yongchang. Semi-quantitative MRI evaluation of cartilage degeneration in early knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(3): 425-429. |
[11] | Wang Yuan, Zhang Yang. Finite element biomechanical analysis of various bone mineral densities on edentulous mandibular four-implant-supported overdentures fixed using Locator attachments [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(22): 3492-3497. |
[12] | Cai Zhencun, Gao Zhenhuai, Ren Lixuan, Zhang Zelin. Effect of smoking on bone mineral density in rats [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(20): 3117-3120. |
[13] | Lin Xiaosheng, Han Linjing, Wu Keliang, Zhang Zhen, Wang Hongbo, Xiao Qinghua, Du Genfa, Zhu Jianzong. Effects of Zishen Jiangu Recipe on bone microstructure and bone mineral density in ovariectomized rats with osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(15): 2382-2386. |
[14] | Yuan Jiayao, Lin Yanping, Lin Xiancan, Huang Jiachun, Chen Tongying, Lin Shi, Lian Xiaohang, Wan Lei, Huang Hongxing. Correlation between body composition and bone mineral density in middle-aged and elderly people [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(15): 2394-2399. |
[15] | Chen Yong, Sun Yang. Effect of zoledronic acid on femoral implant subsidence after hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(12): 1812-1815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||