中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (22): 5886-5896.doi: 10.12307/2026.212

• 组织工程相关大数据分析 Big data analysis in tissue engineering • 上一篇    

系统性全基因组可成药孟德尔随机化鉴定重度抑郁症的治疗靶点

周梦晗1,刘书宁2,姜  涛3,孙壮壮1,曹玲玲1,苏  鑫3,于  澄1,郭军鹏1   

  1. 长春中医药大学,1临床医学院,2马克思主义学院,3基础医学院,吉林省长春市   130117


  • 收稿日期:2025-08-26 接受日期:2025-09-07 出版日期:2026-08-08 发布日期:2025-12-29
  • 通讯作者: 郭军鹏,教授,博士生导师,长春中医药大学临床医学院,吉林省长春市 130117 通讯作者:于澄,副教授,长春中医药大学临床医学院,吉林省长春市 130117
  • 作者简介:第一作者:周梦晗,女,2001年生,吉林省长春市人,汉族,硕士,主要从事营养与食品卫生学研究。
  • 基金资助:
    吉林省自然科学基金项目(YDZJ202501ZYTS192),项目负责人:曹玲玲

Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for major depressive disorder

Zhou Menghan1, Liu Shuning2, Jiang Tao3, Sun Zhuangzhuang1, Cao Lingling1, Su Xin3, Yu Cheng1, Guo Junpeng1   

  1. 1College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; 2School of Marxism, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; 3College of Basic Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • Received:2025-08-26 Accepted:2025-09-07 Online:2026-08-08 Published:2025-12-29
  • Contact: Guo Junpeng, Professor, Doctoral supervisor, College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China Co-corresponding author: Yu Cheng, Associate professor, College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • About author:Zhou Menghan, MS, College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
  • Supported by:
    Natural Science Foundation of Jilin Province, No. YDZJ202501ZYTS192 (to CLL) 

摘要:



文题释义:
可成药基因:指编码蛋白质的基因,这些蛋白质具有作为药物靶点的潜力。可成药基因在药物研究和开发中具有重要价值,是作为新药设计和筛选的基础。
重度抑郁症:是一种常见且复杂的精神疾病,表现为持续至少2周以上的显著抑郁情绪,并伴随兴趣丧失、精力下降、睡眠障碍、食欲改变、自我评价降低、注意力下降或反复出现自杀意念等症状。

背景:重度抑郁症的发生通常与遗传因素与环境因素相关。目前,重度抑郁症的诊断仍主要依赖于临床访谈及症状评估,缺乏明确且可重复的生物学标志物,容易造成误诊与漏诊,延误治疗时机。
目的:通过全面的全基因组孟德尔随机化分析,鉴定可作为重度抑郁症治疗潜在靶点的可成药基因。
方法:将来自药理学可干预基因的表达数量性状位点数据和蛋白质数量性状位点数据,与重度抑郁症的全基因组关联研究数据(177 377例病例,445 321例对照)进行整合,通过孟德尔随机化分析鉴定与重度抑郁症存在因果关系的可成药基因。利用富集分析、蛋白质-蛋白质相互作用网络构建、药物靶点鉴定和分子对接模拟等分析,以进一步探索潜在的治疗策略。
结果与结论:①共分析了4 394个可成药基因,鉴定出21个与重度抑郁症显著相关的可成药基因。贝叶斯共定位分析显示,BTN3A3(嗜乳脂蛋白亚家族3成员A3)、CISD1(铁硫结构域1)和PSMB4(蛋白酶体20S亚基β4)的基于近似贝叶斯因子的假设4后验概率(H4.abf)值> 0.5,支持存在共享因果变异的可能性。GO富集分析表明主要涉及“抗原加工与呈递”“蛋白质降解与加工”“线粒体外膜”“免疫受体活性”等多个与重度抑郁相关的功能通路。蛋白质-蛋白质相互作用网络分析显示,所鉴定基因间存在中等程度的连通性(21个节点,14条边)。药物靶点鉴定确定吉西他滨(CID 60750)、岩藻糖(CID 17106)和异古柯碱(CID 2826)为主要候选化合物,它们与数个关键基因存在强关联。分子对接分析揭示了稳定的药物-蛋白质相互作用,其中异古柯碱与BTN3A3表现出最稳定的结合能(-52.74 kJ/mol)。②孟德尔随机化联合基因组学和结构生物学分析方法,为靶点优先级排序与药物再开发提供了有价值的决策依据,为基础研究资源的高效利用和重度抑郁症的药物开发提供了新思路与方向。

https://orcid.org/0009-0000-7598-441X (周梦晗) 


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 药物靶基因, 重度抑郁症, 可成药基因, 共定位分析, 孟德尔随机化, 治疗靶点

Abstract: BACKGROUND: The occurrence of major depressive disorder is typically associated with genetic and environmental factors. Currently, the diagnosis of major depressive disorder mainly relies on clinical interviews and symptom assessments, lacking clear and reproducible biological markers. This can lead to misdiagnosis and missed diagnoses, delaying the timing of treatment.
OBJECTIVE: To identify druggable genes that may act as potential therapeutic targets for major depressive disorder by conducting comprehensive genome-wide Mendelian randomization analysis.
METHODS: By integrating expression quantitative trait locus (eQTL) data and protein quantitative trait locus (pQTL) data from pharmacologically actionable genes with genome-wide association study (GWAS) data on major depressive disorder (including 177 377 cases and 445 321 controls), Mendelian randomization analysis was conducted to identify druggable genes that have a causal relationship with major depressive disorder. Additionally, enrichment analysis, protein-protein interaction network construction, drug target identification, and molecular docking simulations were performed to further explore potential therapeutic strategies.
RESULTS AND CONCLUSION: A total of 4 394 druggable genes were analyzed, and 21 druggable genes considerably associated with major depressive disorder were identified. Bayesian colocalization analysis indicated that BTN3A3 (butyrophilin subfamily 3 member A3), CISD1 (CDGSH iron sulfur domain 1), and PSMB4 (proteasome subunit beta type 4) had approximate Bayesian factor-based hypothesis 4 posterior probabilities (H4.abf) > 0.5, supporting the possibility of shared causal variations. Gene Ontology (GO) enrichment analysis revealed that these genes were mainly involved in several functional pathways related to major depression, including "antigen processing and presentation," "protein degradation and processing," "mitochondrial outer membrane," and "immune receptor activity." Protein-protein interaction network analysis showed a moderate degree of connectivity among the identified genes (21 nodes and 14 edges). Drug target identification highlighted gemcitabine (CID 60750), fucose (CID 17106), and isocorydine (CID 2826) as major candidate compounds, which were strongly associated with several key genes. Molecular docking analysis revealed stable drug-protein interactions, with isocorydine exhibiting the most stable binding energy with BTN3A3 (-52.74 kJ/mol). Furthermore, the combination of Mendelian randomization with genomics and structural biology analysis methods provides valuable decision-making support for target prioritization and drug repurposing, offering new ideas and directions for the efficient utilization of basic research resources and drug development for major depressive disorder.


Key words: drug target genes, major depressive disorder, druggable genes, colocalization analyses, Mendelian randomization, therapeutic targets

中图分类号: