中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (13): 3359-3369.doi: 10.12307/2026.339
• 干细胞综述 stem cell review • 上一篇 下一篇
杨羽茜1,徐 丹1,刘忠山2
接受日期:2025-08-20
出版日期:2026-05-08
发布日期:2025-12-26
通讯作者:
刘忠山,博士,主任医师,硕士研究生导师,贵州医科大学附属医院,贵州省贵阳市 550004
作者简介:杨羽茜,女,1998年生,贵州省凯里市人,布依族,贵州医科大学在读硕士,主要从事干细胞基础研究。
基金资助:Yang Yuxi1, Xu Dan1, Liu Zhongshan2
Accepted:2025-08-20
Online:2026-05-08
Published:2025-12-26
Contact:
Liu Zhongshan, MD, Chief physician, Master’s supervisor, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
About author:Yang Yuxi, Master candidate, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
Supported by:摘要:
文题释义:
间充质干细胞:是一类具有自我更新能力和多向分化潜能的成体干细胞,主要存在于骨髓、脂肪、脐带、胎盘等结缔组织和间充质中,在一定条件下可以分化成多种功能细胞。间充质干细胞在组织工程、再生医学、自身免疫性疾病治疗及抗炎疗法中具有潜力。中图分类号:
杨羽茜, 徐 丹, 刘忠山. 改善间充质干细胞体外培养效率的策略分析[J]. 中国组织工程研究, 2026, 30(13): 3359-3369.
Yang Yuxi, Xu Dan, Liu Zhongshan. Analysis of strategies to improve efficiency of in vitro culture of mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(13): 3359-3369.






| 1] XIE Z, YU W, YE G, et al. Single-cell RNA sequencing analysis of human bone-marrow-derived mesenchymal stem cells and functional subpopulation identification. Exp Mol Med. 2022;54(4):483-492. [2] HAN X, YANG B, ZOU F, et al. Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. J Comp Eff Res. 2020;9(5):361-374. [3] ZENG CW. Multipotent Mesenchymal Stem Cell-Based Therapies for Spinal Cord Injury: Current Progress and Future Prospects. Biology (Basel). 2023;12(5):653. [4] YAN W, XIA Y, ZHAO H, et al. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol. 2024;188:1-14. [5] FARABI B, ROSTER K, HIRANI R, et al. The Efficacy of Stem Cells in Wound Healing: A Systematic Review. Int J Mol Sci. 2024; 25(5):3006. [6] MUNDRA V, GERLING IC, MAHATO RI. Mesenchymal stem cell-based therapy. Mol Pharm. 2013;10(1):77-89. [7] SHI L, WANG L, XU R, et al. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct Target Ther. 2021;6(1):339. [8] MAZINE A, RUSHANI D, YAU TM. Clinical mesenchymal stem cell therapy in ischemic cardiomyopathy. JTCVS Open. 2021;8: 135-141. [9] 陈思铭,胡加伟,李丽丽,等.两种方法提取人脐带间充质干细胞三维培养生物学特性的比较[J].中国组织工程研究, 2022,26(19):2997-3003. [10] HWANG ES. Senescence suppressors: their practical importance in replicative lifespan extension in stem cells. Cell Mol Life Sci. 2014;71(21):4207-4219. [11] 白金萍.三种不同来源间充质干细胞增殖能力的比较研究[D].长春:吉林大学,2014. [12] HAYASHI O, KATSUBE Y, HIROSE M, et al. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int. 2008;82(3):238-247. [13] OJA S, KOMULAINEN P, PENTTILÄ A, et al. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 2018; 9(1): 6. [14] YANG YK, OGANDO CR, WANG SEE C, et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9(1):131. [15] LI Y, WU Q, WANG Y, et al. Senescence of mesenchymal stem cells (Review). Int J Mol Med. 2017;39(4):775-782. [16] BONAB MM, ALIMOGHADDAM K, TALEBIAN F, et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7:14. [17] 赵文静,刘百坤,李秋莲,等.长期传代培养对骨髓间充质干细胞生物学特性的影响[J].中国组织工程研究,2024, 28(31):4926-4930. [18] TJEMPAKASARI A, SUROTO H, SANTOSO D. Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (Kaunas). 2021;58(1):61. [19] LIN W, XU L, ZWINGENBERGER S, et al. Mesenchymal stem cells homing to improve bone healing. J Orthop Translat. 2017;9: 19-27. [20] FU X, LIU G, HALIM A, et al. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8(8):784. [21] GEISSLER S, TEXTOR M, KÜHNISCH J, et al. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One. 2012;7(12):e52700. [22] BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23-24):1565-1576. [23] SIRAJ Y, APRILE D, ALESSIO N, et al. IGFBP7 is a key component of the senescence-associated secretory phenotype (SASP) that induces senescence in healthy cells by modulating the insulin, IGF, and activin A pathways. Cell Commun Signal. 2024;22(1):540. [24] LEE BC, YU KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep. 2020;53(2):65-73. [25] SMITH N, SHIRAZI S, CAKOUROS D, et al. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci. 2023;24(7):6499. [26] REVUELTA M, MATHEU A. Autophagy in stem cell aging. Aging Cell. 2017;16(5):912-915. [27] MULLER M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal. 2009;11(1):59-98. [28] SHIBATA KR, AOYAMA T, SHIMA Y, et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells. 2007;25(9):2371-2382. [29] KIM DY, LEE J, KANG D, et al. Multipotent neurogenic fate of mesenchymal stem cell is determined by Cdk4-mediated hypophosphorylation of Smad-STAT3. Cell Cycle. 2016;15(13):1787-1795. [30] BRUNET A, GOODELL MA, RANDO TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24(1):45-62. [31] JIANG X, LI W, GE L, et al. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis. 2023;14(5):1651-1676. [32] VONO R, JOVER GARCIA E, SPINETTI G, et al. Oxidative Stress in Mesenchymal Stem Cell Senescence: Regulation by Coding and Noncoding RNAs. Antioxid Redox Signal. 2018;29(9):864-879. [33] GUO J, HUANG X, DOU L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7(1):391. [34] YE G, XIE Z, ZENG H, et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 2020;11(9):775. [35] WANG Y, LIU Y, CHEN E, et al. The role of mitochondrial dysfunction in mesenchymal stem cell senescence. Cell Tissue Res. 2020; 382(3):457-462. [36] MIWA S, KASHYAP S, CHINI E, et al. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest. 2022; 132(13):e158447. [37] KARAGIANNIS P, TAKAHASHI K, SAITO M, et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev. 2019;99(1):79-114. [38] JUNGBLUTH P, SPITZHORN LS, GRASSMANN J, et al. Human iPSC-derived iMSCs improve bone regeneration in mini-pigs. Bone Res. 2019;7:32. [39] ZHAO L, WANG J, WANG P, et al. Oct4 cooperates with c-Myc to improve mesenchymal-to-endothelial transition and myocardial repair of cardiac-resident mesenchymal stem cells. Stem Cell Res Ther. 2022;13(1):445. [40] HAN SM, HAN SH, COH YR, et al. Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 2014;46(6):e101. [41] DARR H, MAYSHAR Y, BENVENISTY N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development. 2006;133(6):1193-1201. [42] ROAKE CM, ARTANDI SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol. 2020;21(7): 384-397. [43] SIMONSEN JL, ROSADA C, SERAKINCI N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002; 20(6):592-596. [44] MADONNA R, GUARNIERI S, KOVÁCSHÁZI C, et al. Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion. J Cell Mol Med. 2021;25(12):5381-5390. [45] ZHANG Y, ZHU W, HE H, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging (Albany NY). 2019;11(24):12641-12660. [46] SUN J, SHEN H, SHAO L, et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 2020;11(1):373. [47] XIANG Q, LIAO Y, CHAO H, et al. ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model. Stem Cell Res Ther. 2018;9(1):51. [48] WANG J, WANG J, LU C, et al. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci. 2024; 81(1):312. [49] FREDERIKSEN HR, GLANTZ A, VØLS KK, et al. CRISPR-Cas9 immune-evasive hESCs are rejected following transplantation into immunocompetent mice. Front Genome Ed. 2024;6:1403395. [50] LI W, MA N, ONG LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8): 2118-2127. [51] LI Q, ZHANG W, XIAO E. SOD2 overexpression in bone marrow‑derived mesenchymal stem cells ameliorates hepatic ischemia/reperfusion injury. Mol Med Rep. 2021;24(3):671. [52] ZHOU Y, HU Z. Genome-wide demethylation by 5-aza-2’-deoxycytidine alters the cell fate of stem/progenitor cells. Stem Cell Rev Rep. 2015;11(1):87-95. [53] HUANG M, XIAO X, JI G, et al. Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon. 2021;8(1): e08664. [54] KOCH L. microRNAs as systemic regulators of ageing. Nat Rev Genet. 2023;24(7):415. [55] OKADA M, KIM HW, MATSU-URA K, et al. Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase. Stem Cells. 2016;34(1):148-159. [56] HONG Y, HE H, JIANG G, et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell. 2020;19(4): e13128. [57] SHANG J, YAO Y, FAN X, et al. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta. 2016;1863(4):520-532. [58] SU T, XIAO Y, XIAO Y, et al. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance. ACS Nano. 2019;13(2):2450-2462. [59] XU J, HUANG Z, LIN L, et al. miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. Int J Mol Med. 2015;35(1):59-71. [60] MADL CM, HEILSHORN SC, BLAU HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018; 557(7705):335-342. [61] GHARIBI B, FARZADI S, GHUMAN M, et al. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells. 2014;32(8):2256-2266. [62] MOTA-MARTORELL N, JOVÉ M, PAMPLONA R. mTOR Complex 1 Content and Regulation Is Adapted to Animal Longevity. Int J Mol Sci. 2022;23(15):8747. [63] CHANG TC, HSU MF, SHIH CY, et al. 5-methoxytryptophan protects MSCs from stress induced premature senescence by upregulating FoxO3a and mTOR. Sci Rep. 2017;7(1):11133. [64] DAI Z, LI Y, QUARLES LD, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 2007;14(12):806-814. [65] ZHENG C, SUI B, HU C, et al. Vitamin C promotes in vitro proliferation of bone marrow mesenchymal stem cells derived from aging mice. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(12):1689-1693. [66] HEINRICHS DP, MALDONADO VV, ARDANA IKK, et al. Assessing the Effects of Dasatinib on Mesenchymal Stem/Stromal Cells. Cell Mol Bioeng. 2024;17(6):609-618. [67] PANG XG, CONG Y, BAO NR, et al. Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway. Biomed Res Int. 2018;2018:4178021. [68] KIM H, YU MR, LEE H, et al. Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell. 2021;20(2):e13317. [69] NAJAFI R, SHARIFI AM. Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther. 2013;13(7):959-972. [70] KHAN I, ALI A, AKHTER MA, et al. Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats. Life Sci. 2016;162:60-69. [71] KIM DS, JANG IK, LEE MW, et al. Enhanced Immunosuppressive Properties of Human Mesenchymal Stem Cells Primed by Interferon-γ. EBioMedicine. 2018;28: 261-273. [72] PARANDAKH A, ANBARLOU A, TAFAZZOLI-SHADPOUR M, et al. Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces. 2019;173:194-201. [73] MCMURRAY RJ, GADEGAARD N, TSIMBOURI PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637-644. [74] HUANG X, HUANG Z, GAO W, et al. Current Advances in 3D Dynamic Cell Culture Systems. Gels. 2022;8(12):829. [75] GUO L, ZHOU Y, WANG S, et al. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med. 2014;18(10):2009-2019. [76] CHENG NC, WANG S, YOUNG TH. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials. 2012;33(6):1748-1758. [77] KIM J, ADACHI T. Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture. Sci Rep. 2021;11(1):13204. [78] GRIFFIN FE, SCHIAVI J, MCDEVITT TC, et al. The role of adhesion junctions in the biomechanical behaviour and osteogenic differentiation of 3D mesenchymal stem cell spheroids. J Biomech. 2017;59:71-79. [79] YAMAGUCHI Y, OHNO J, SATO A, et al. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 2014;14:105. [80] RAVI M, PARAMESH V, KAVIYA SR, et al. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1): 16-26. [81] SULTANA N, COLE A, STRACHAN F. Biocomposite Scaffolds for Tissue Engineering: Materials, Fabrication Techniques and Future Directions. Materials (Basel). 2024;17(22):5577. [82] NGUYEN L, BANG S, NOH I. Tissue Regeneration of Human Mesenchymal Stem Cells on Porous Gelatin Micro-Carriers by Long-Term Dynamic In Vitro Culture. Tissue Eng Regen Med. 2019;16(1):19-28. [83] BHUPTANI RS, PATRAVALE VB. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. Int J Pharm. 2016;515(1-2):555-564. [84] REMUZZI A, BONANDRINI B, TIRONI M, et al. Effect of the 3D Artificial Nichoid on the Morphology and Mechanobiological Response of Mesenchymal Stem Cells Cultured In Vitro. Cells. 2020;9(8):1873. [85] XU L, REN W, LONG Y, et al. Antisenescence Expansion of Mesenchymal Stem Cells Using Piezoelectric β-Poly(vinylidene fluoride) Film-Based Culture. ACS Appl Mater Interfaces. 2024;16(46):63207-63224. [86] KANG M, YANG Y, ZHANG H, et al. Comparative Analysis of Serum and Serum-Free Medium Cultured Mesenchymal Stromal Cells for Cartilage Repair. Int J Mol Sci. 2024;25(19):10627. [87] NG F, BOUCHER S, KOH S, et al. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112(2):295-307. [88] SHAFAEI H, ESMAEILI A, MARDANI M, et al. Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells. Bone Marrow Transplant. 2011;46(11):1464-1471. [89] OTTE A, BUCAN V, REIMERS K, et al. Mesenchymal stem cells maintain long-term in vitro stemness during explant culture. Tissue Eng Part C Methods. 2013; 19(12):937-948. [90] ZHANG B, YANG S, ZHANG Y, et al. Co-culture of mesenchymal stem cells with umbilical vein endothelial cells under hypoxic condition. J Huazhong Univ Sci Technolog Med Sci. 2012;32(2):173-180. [91] BOYETTE LB, CREASEY OA, GUZIK L, et al. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med. 2014;3(2):241-254. [92] BADER AM, KLOSE K, BIEBACK K, et al. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One. 2015;10(9):e0138477. [93] MAN K, BRUNET MY, LEES R, et al. Epigenetic Reprogramming via Synergistic Hypomethylation and Hypoxia Enhances the Therapeutic Efficacy of Mesenchymal Stem Cell Extracellular Vesicles for Bone Repair. Int J Mol Sci. 2023;24(8):7564. [94] LIU X, DUAN B, CHENG Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2(10):845-854. [95] VAN ZOELEN EJ, DUARTE I, HENDRIKS JM, et al. TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther. 2016; 7(1):123. [96] TURINETTO V, VITALE E, GIACHINO C. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci. 2016;17(7):1164. [97] ZIMMERMANN JA, HETTIARATCHI MH, MCDEVITT TC. Enhanced Immunosuppression of T Cells by Sustained Presentation of Bioactive Interferon-γ Within Three-Dimensional Mesenchymal Stem Cell Constructs. Stem Cells Transl Med. 2017;6(1):223-237. [98] TZOUANAS SN, EKENSEAIR AK, KASPER FK, et al. Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. J Biomed Mater Res A. 2014;102(5):1222-1230. |
| [1] | 陈秋函, 杨 龙, 袁代柱, 吴展羽, 邹梓豪, 叶 川. 膝关节周围截骨治疗膝骨关节炎:治疗策略的优化[J]. 中国组织工程研究, 2026, 30(9): 2303-2312. |
| [2] | 赵非凡, 曹玉净. 股骨近端防旋髓内钉治疗股骨转子间骨折内固定失效的危险因素与应对策略[J]. 中国组织工程研究, 2026, 30(9): 2323-2333. |
| [3] | 蒋祥龙, 厉中山, 车同同. 低频脉冲电磁场在肌肉修复与增长中的应用效果和作用机制[J]. 中国组织工程研究, 2026, 30(9): 2350-2360. |
| [4] | 刘金龙, 阿卜杜吾普尔•海比尔, 白 臻, 苏丹阳, 苗 鑫, 李 菲, 杨晓鹏. 不同非手术方法治疗青少年特发性脊柱侧凸效果的系统综述与网状Meta分析[J]. 中国组织工程研究, 2026, 30(9): 2370-2379. |
| [5] | 吴妍廷, 李 宇, 廖金凤. 氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合[J]. 中国组织工程研究, 2026, 30(8): 1885-1895. |
| [6] | 蒋星海, 宋玉林, 李德津, 邵建敏, 徐军志, 刘华凯, 吴应国, 沈岳辉, 冯思诚. 血管内皮生长因子165基因转染骨髓间充质干细胞构建血管化两亲性肽凝胶模块[J]. 中国组织工程研究, 2026, 30(8): 1903-1911. |
| [7] | 胡雄科, 刘少华, 谭 谦, 刘 昆, 朱光辉. 紫草素干预骨髓间充质干细胞改善老年小鼠股骨的微结构[J]. 中国组织工程研究, 2026, 30(7): 1609-1615. |
| [8] | 宋浦蓁, 马贺宾, 陈宏广, 章亚东. 骨髓间充质干细胞外泌体联合转化生长因子β1对巨噬细胞的作用[J]. 中国组织工程研究, 2026, 30(7): 1616-1623. |
| [9] | 蔡子鸣, 于庆贺, 马鹏飞, 张 鑫, 周龙千, 张崇阳, 林文平. 血红素氧合酶1减轻脂多糖诱导髓核间充质干细胞的炎症反应[J]. 中国组织工程研究, 2026, 30(7): 1624-1631. |
| [10] | 袁小霜, 杨 姁, 杨 波, 陈晓旭, 田 婷, 王飞清, 李艳菊, 刘 洋, 杨文秀. 弥漫性大B细胞淋巴瘤细胞条件培养液对人骨髓间充质干细胞增殖、凋亡的影响[J]. 中国组织工程研究, 2026, 30(7): 1632-1640. |
| [11] | 李镇宇, 张思明, 柏家祥, 朱 晨. 蛇床子素改善高糖环境下骨髓间充质干细胞的成骨分化功能[J]. 中国组织工程研究, 2026, 30(7): 1641-1648. |
| [12] | 韩念荣, 黄异飞, 艾克热木·吾斯曼, 刘岩路, 胡 炜. 高糖微环境中程序性细胞死亡受体1抑制大鼠骨髓间充质干细胞的成骨分化[J]. 中国组织工程研究, 2026, 30(7): 1649-1657. |
| [13] | 金东升, 赵张红, 朱子银, 张 森, 孙祖延, 邓 江. 淫羊藿苷缓释微球三维支架对兔骨髓间充质干细胞成骨分化的影响[J]. 中国组织工程研究, 2026, 30(7): 1658-1668. |
| [14] | 邹玉莲, 陈朝沛, 黄海霞, 兰玉燕, 刘 敏, 黄 婷. 白藜芦醇在炎症微环境下促进骨髓间充质干细胞的成骨分化[J]. 中国组织工程研究, 2026, 30(7): 1669-1678. |
| [15] | 王秋花, 杜孜玮, 王文双, 赵冬梅, 张晓晴. 雌雄大鼠脂肪间充质干细胞代谢、增殖、分化及向血管平滑肌细胞分化的差异性[J]. 中国组织工程研究, 2026, 30(7): 1687-1698. |
1.1.6 检索策略 中国知网和PubMed数据库检索策略见图1。
1.1.7 检索文献量 共检索到中文文献215篇,英文文献2 807篇。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
间充质干细胞:是一类具有自我更新能力和多向分化潜能的成体干细胞,主要存在于骨髓、脂肪、脐带、胎盘等结缔组织和间充质中,在一定条件下可以分化成多种功能细胞。间充质干细胞在组织工程、再生医学、自身免疫性疾病治疗及抗炎疗法中具有潜力。
三维培养:将细胞在三维空间环境中培养,使其形成类似体内组织的立体结构,以更好地模拟细胞在真实组织或器官中的微环境。三维培养能提供更接近生理条件的细胞-细胞和细胞-基质相互作用微环境,广泛应用于组织工程、药物筛选、肿瘤研究和再生医学等领域。
#br#
近年来,随着生物材料、微环境调控和类器官技术的发展,干细胞培养体系不断优化,细胞体外培养技术正朝着更精准、更高效、更临床化的方向发展。但在实现规模化临床应用过程中,培养系统的批次稳定性差、细胞表型异质性高等关键瓶颈问题依然突出,严重制约了干细胞治疗产品的产业化进程。本文就干细胞在体外培养时所发生的改变及其可能原因作一综述,并重点评述了当前研究中最具应用前景的几类优化策略,旨在为建立规范化的间充质干细胞工业化生产体系提供理论依据和技术路线参考,为深入理解细胞体外培养命运的微环境调控规律提供新的研究思路,或将为突破现有规模化生产瓶颈提供创新性的解决路径。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||