中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (16): 4193-4203.doi: 10.12307/2026.720
• 组织构建综述 tissue construction review • 上一篇 下一篇
王正业,刘万林,赵振群
收稿日期:2025-06-06
接受日期:2025-09-01
出版日期:2026-06-08
发布日期:2025-11-28
通讯作者:
刘万林,硕士,教授,内蒙古医科大学第二附属医院儿童骨科医学中心,内蒙古自治区呼和浩特市 010090
共同通讯作者:赵振群,博士,教授,内蒙古医科大学第二附属医院儿童骨科医学中心,内蒙古自治区呼和浩特市 010090
作者简介:王正业,男,1997年生,内蒙古自治区鄂尔多斯市人,汉族,内蒙古医科大学在读硕士,主要从事髋关节的相关研究。
基金资助:Wang Zhengye, Liu Wanlin, Zhao Zhenqun
Received:2025-06-06
Accepted:2025-09-01
Online:2026-06-08
Published:2025-11-28
Contact:
Liu Wanlin, MS, Professor, Center for Pediatric Orthopedics, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
Co-corresponding author: Zhao Zhenqun, PhD, Professor, Center for Pediatric Orthopedics, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
About author:Wang Zhengye, MS candidate, Center for Pediatric Orthopedics, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010090, Inner Mongolia Autonomous Region, China
Supported by:摘要:
文题释义:
血管内皮生长因子A:血管内皮生长因子A主要通过与其受体(如血管内皮生长因子受体1、血管内皮生长因子受体2)结合发挥生物学功能,如在关节软骨发育中调控软骨细胞的分化和基质代谢。研究表明,血管内皮生长因子受体1在胚胎期软骨模板形成、生长板重塑及成年软骨稳态维持中具有时空特异性作用,在低质量浓度(< 10 ng/mL)时,通过激活血管内皮生长因子受体2促进软骨细胞存活及基质合成;而在高质量浓度(> 20 ng/mL)时,它则通过上调基质金属蛋白酶13等因子加速软骨降解。此外,血管内皮生长因子A的剪切异构体(如血管内皮生长因子A 121和血管内皮生长因子A 165)在软骨发育和疾病中作用显著,是研究软骨发育和疾病的关键因素。
力学-生化耦合机制:是指机械应力与生化信号之间的相互作用和协同调控。在关节软骨发育和疾病中,这种耦合机制通过整合机械信号和生化信号,调控软骨细胞的行为和组织的稳态。有研究发现,软骨组织在生理性机械负荷下,血管内皮生长因子A激活血管内皮生长因子受体2,抑制软骨下血管异常侵入,维持软骨的低代谢稳态;而在病理性负荷下,血管内皮生长因子A过度表达则促进血管内皮细胞向软骨内侵袭,加速软骨退变。
背景:关节软骨的健康与功能维持是骨科领域的研究热点。血管内皮生长因子A作为调控血管生成的关键因子,它在软骨发育中的作用长期存在争议。
目的:文章旨在系统总结血管内皮生长因子A在关节软骨发育中的多维度调控机制及在疾病中的作用,探讨血管内皮生长因子A作为治疗靶点的可行性,并分析当前治疗策略的技术瓶颈与突破方向。
方法:通过检索PubMed、中国知网、万方数据库及维普数据库(各数据库建库至2025年5月),结合手工查阅相关书籍,筛选与血管内皮生长因子A在关节软骨发育及疾病中调控机制相关的高质量文献。最终纳入117篇文献(英文112篇,中文5篇)进行系统分析与总结。
结果与结论:血管内皮生长因子A通过与受体的时空特异性互作调控软骨细胞分化与代谢;血管内皮生长因子A剪切异构体在软骨发育和疾病中作用显著;力学信号与生化信号的耦合进一步增强了血管内皮生长因子A的调控复杂性。在骨关节炎中,血管内皮生长因子A的表达呈现浓度依赖性,低浓度促进软骨修复,高浓度加剧软骨降解;在类风湿关节炎中,血管内皮生长因子A通过促进滑膜血管生成和炎症细胞浸润加剧疾病进程;在髋关节发育不良中,血管内皮生长因子A对关节软骨发育产生了显著的促进作用。血管内皮生长因子A在疾病早期显示出治疗潜力,但递送系统的时空特异性不足、基因编辑的脱靶风险以及个体化治疗的分子分型缺失仍是主要瓶颈。总之,血管内皮生长因子A在关节软骨发育与疾病中的作用复杂多效,精准调控对软骨相关疾病治疗至关重要。当前研究面临递送系统精准性、基因编辑安全性及个体化治疗策略缺失等瓶颈。未来需优化递送系统,结合单细胞多组学技术实现个体化治疗,探索其与其他信号通路的协同作用。同时,亟待从“单一靶点抑制”向“微环境重塑”转变,依赖跨学科技术整合与临床前模型精准化设计。通过单细胞测序解析软骨细胞亚群响应差异,利用CRISPR-Cas9技术筛选阶段特异性调控元件,开发智能型缓释系统、交互作用模型、工程化载体,整合多维组学并构建类器官模型、借助人工智能预测,全方位攻克难关,推动临床转化,为关节软骨相关疾病治疗带来新希望。
https://orcid.org/0009-0006-6873-7422(王正业)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
王正业, 刘万林, 赵振群. 血管内皮生长因子A在关节软骨发育中的多维度靶点调控作用[J]. 中国组织工程研究, 2026, 30(16): 4193-4203.
Wang Zhengye, Liu Wanlin, Zhao Zhenqun. Multidimensional target regulation of vascular endothelial growth factor A in articular cartilage development[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(16): 4193-4203.




| [1] 王正业,刘万林,赵振群.血管内皮生长因子A靶向调控血管化治疗激素性股骨头坏死的机制[J].中国组织工程研究, 2026,30(3):671-679. [2] MENG X, MENG X, HE Z, et al. Selenium Deficiency Can Promote the Expression of VEGF and Inflammatory Factors in Cartilage Differentiation and Mediates Cartilage Injury. Biol Trace Elem Res. 2024; 202(9):4170-4179. [3] RIBATTI D, D’AMATI A. Bone angiocrine factors. Front Cell Dev Biol. 2023;11:1244372. [4] ZHANG C, ZHAO R, DONG Z, et al. IHH-GLI-1-HIF-2α signalling influences hypertrophic chondrocytes to exacerbate osteoarthritis progression. J Orthop Translat. 2024;49: 207-217. [5] 李正南.RAD54L调控HIF-1α/VEGF信号通路影响骨关节炎的作用及机制研究[D].南昌:南昌大学,2024. [6] CHEN Y, CHEN W, REN Y, et al. Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis. Int J Biol Macromol. 2022; 221:1313-1324. [7] AHMED I, JOHN P, BHATTI A. Association analysis of Vascular Endothelial Growth Factor-A (VEGF-A) polymorphism in rheumatoid arthritis using computational approaches. Sci Rep. 2023;13(1):21957. [8] MA K, SINGH G, WANG J, et al. Targeting Vascular Endothelial Growth Factor Receptors as a Therapeutic Strategy for Osteoarthritis and Associated Pain. Int J Biol Sci. 2023;19(2):675-690. [9] CHEN Z, BO Q, WANG C, et al. Single BMSC-derived cartilage organoids for gradient heterogeneous osteochondral regeneration by leveraging native vascular microenvironment. J Nanobiotechnology. 2025;23(1):325. [10] PUEYO MOLINER A, ITO K, ZAUCKE F, et al. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol. 2025;21(5):291-308. [11] NOSSIN Y, FARRELL E, KOEVOET WJLM, et al. The Releasate of Avascular Cartilage Demonstrates Inherent Pro-Angiogenic Properties In Vitro and In Vivo. Cartilage. 2021;13(2_suppl):559S-570S. [12] QIAN JJ, XU Q, XU WM, et al. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16(1):379. [13] MORA-PEREIRA M, BOONE L, NASKOU M, et al. Horse serum or equine platelet lysate increases total vascular endothelial growth factor A concentrations and correlates with vascular growth in an equine facial arterial ring assay. Am J Vet Res. 2023;84(7): ajvr.23.02.0023. [14] VADALÀ G, AMBROSIO L, CATTANI C, et al. Bevacizumab Arrests Osteoarthritis Progression in a Rabbit Model: A Dose-Escalation Study. J Clin Med. 2021;10(13): 2825. [15] SOTOZAWA M, KUMAGAI K, ISHIKAWA K, et al. Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee. J Orthop Surg Res. 2023;18(1):25. [16] SOGO Y, TOYODA E, NAGAI T, et al. Disease-Modifying Effects of Lenvatinib, a Multiple Receptor Tyrosine Kinase Inhibitor, on Posttraumatic Osteoarthritis of the Knee. Int J Mol Sci. 2024;25(12):6514. [17] LEE JS, GUO P, KLETT K, et al. VEGF-attenuated platelet-rich plasma improves therapeutic effect on cartilage repair. Biomater Sci. 2022;10(9):2172-2181. [18] MENG N, XIE HX, HOU JR, et al. Design and semisynthesis of oleanolic acid derivatives as VEGF inhibitors: Inhibition of VEGF-induced proliferation, angiogenesis, and VEGFR2 activation in HUVECs. Chin J Nat Med. 2022;20(3):229-240. [19] SONG J, GUAN Z, SONG C, et al. Apatinib suppresses the migration, invasion and angiogenesis of hepatocellular carcinoma cells by blocking VEGF and PI3K/AKT signaling pathways. Mol Med Rep. 2021; 23(6):429. [20] LI J, CHEN H, ZHANG D, et al. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage. 2021;29(3):313-322. [21] ZHAO Z, SUN X, TU P, et al. Mechanisms of vascular invasion after cartilage injury and potential engineering cartilage treatment strategies. FASEB J. 2024;38(6):e23559. [22] WEI Y, XIE C, WEI Y, et al. SVF Cell Sheets as a New Multicellular Material-Based Strategy for Promoting Angiogenesis and Regeneration in Diced Cartilage Grafts. J Craniofac Surg. 2025. doi: 10.1097/SCS.0000000000011358. [23] XIE W, JIANG L, HUANG X, et al. Hsa_circ_0004662 Accelerates the Progression of Osteoarthritis via the microRNA-424-5p/VEGFA Axis. Curr Mol Med. 2024;24(2):217-225. [24] FERRARA N, HENZEL WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161(2):851-858. [25] TISCHER E, MITCHELL R, HARTMAN T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266(18):11947-11954. [26] KENDALL RL, THOMAS KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A. 1993;90(22):10705-10709. [27] FONG GH, ROSSANT J, GERTSENSTEIN M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376(6535):66-70. [28] CARMELIET P, MOONS L, COLLEN D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res. 1998;39(1):8-33. [29] FERRARA N, GERBER HP, LECOUTER J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669-676. [30] HIRATSUKA S, KATAOKA Y, NAKAO K, et al. Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol Cell Biol. 2005;25(1):355-363. [31] NAGAO M, HAMILTON JL, KC R, et al. Vascular Endothelial Growth Factor in Cartilage Development and Osteoarthritis. Sci Rep. 2017;7(1):13027. [32] PÉREZ-GUTIÉRREZ L, FERRARA N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023;24(11):816-834. [33] 杨宇飞.VEGF-A微载体靶向调控血管化促进DDH中股骨近端发育的机制研究[D].呼和浩特:内蒙古医科大学,2024. [34] BARTOLETTI G, DONG C, UMAR M, et al. Pdgfra regulates multipotent cell differentiation towards chondrocytes via inhibiting Wnt9a/beta-catenin pathway during chondrocranial cartilage development. Dev Biol. 2020;466(1-2):36-46. [35] ZHANG J, LIN C, SONG Y, et al. BMP4/ALK3 deficiency leads to Meckel’s cartilage truncation mimicking the mandible Tessier 30 cleft. Oral Dis. 2022;28(4):1215-1227. [36] CAXARIA S, KOUVATSOS N, ELDRIDGE SE, et al. Disease modification and symptom relief in osteoarthritis using a mutated GCP-2/CXCL6 chemokine. EMBO Mol Med. 2023;15(1):e16218. [37] WEI Y, MA X, SUN H, et al. EGFR Signaling Is Required for Maintaining Adult Cartilage Homeostasis and Attenuating Osteoarthritis Progression. J Bone Miner Res. 2022;37(5):1012-1023. [38] FARAHAT M, HARA ES, ANADA R, et al. Mechanotransductive Mechanisms of Biomimetic Hydrogel Cues Modulating Meckel’s Cartilage Degeneration. Adv Biol (Weinh). 2022;6(6):e2101315. [39] QIN W, ZHANG Z, YAN J, et al. Interaction of Neurovascular Signals in the Degraded Condylar Cartilage. Front Bioeng Biotechnol. 2022;10:901749. [40] WANG X, LU X, TIAN D, et al. Transcriptomic integration and ligand-receptor crosstalk reveal the underlying molecular mechanisms between hip cartilage and subchondral bone in osteonecrosis of femoral head. Gene. 2025;939:149179. [41] XUE M, HUANG N, LUO Y, et al. Combined Transcriptomics and Metabolomics Identify Regulatory Mechanisms of Porcine Vertebral Chondrocyte Development In Vitro. Int J Mol Sci. 2024;25(2):1189. [42] STAR E, STEVENS M, GOODING C, et al. A drug-repositioning screen using splicing-sensitive fluorescent reporters identifies novel modulators of VEGF-A splicing with anti-angiogenic properties. Oncogenesis. 2021;10(5):36. [43] RAJA A, GANTA V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. J Am Heart Assoc. 2024;13(20):e034304. [44] MONTEMAGNO C, DURIVAULT J, GASTALDI C, et al. A group of novel VEGF splice variants as alternative therapeutic targets in renal cell carcinoma. Mol Oncol. 2023; 17(7):1379-1401. [45] GANTA VC, ANNEX BH. Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system. Expert Opin Ther Targets. 2021;25(5):381-391. [46] XU Y, YANG Y, HUANG Y, et al. Inhibition of Nrf2/HO-1 signaling pathway by Dextran Sulfate suppresses angiogenesis of Gastric Cancer. J Cancer. 2021;12(4):1042-1060. [47] SONG S, ZHANG G, CHEN X, et al. HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway. J Nanobiotechnology. 2023; 21(1):257. [48] MANTSOUNGA CS, LEE C, NEVERSON J, et al. Macrophage IL-1β promotes arteriogenesis by autocrine STAT3- and NF-κB-mediated transcription of pro-angiogenic VEGF-A. Cell Rep. 2022;38(5):110309. [49] YADAV P, PANDEY A, KAKANI P, et al. Hypoxia-induced loss of SRSF2-dependent DNA methylation promotes CTCF-mediated alternative splicing of VEGFA in breast cancer. iScience. 2023;26(6):106804. [50] BELALI T, WODI C, CLARK B, et al. WT1 activates transcription of the splice factor kinase SRPK1 gene in PC3 and K562 cancer cells in the absence of corepressor BASP1. Biochim Biophys Acta Gene Regul Mech. 2020;1863(12):194642. [51] AL KAWAS H, SAAID I, JANK P, et al. How VEGF-A and its splice variants affect breast cancer development - clinical implications. Cell Oncol (Dordr). 2022;45(2):227-239. [52] MABETA P, STEENKAMP V. The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. Int J Mol Sci. 2022;23(24):15585. [53] AMEYA KP, ASHIKHA SHIRIN USMAN PP, SEKAR D. Navigating the tumor landscape: VEGF, MicroRNAs, and the future of cancer treatment. Biochim Biophys Acta Gene Regul Mech. 2025;1868(2):195091. [54] SHI Z, KUAI M, LI B, et al. The role of VEGF in Cancer angiogenesis and tumorigenesis: Insights for anti-VEGF therapy. Cytokine. 2025;189:156908. [55] YAMAKUCHI M, OKAWA M, TAKENOUCHI K, et al. VEGF-A165 is the predominant VEGF-A isoform in platelets, while VEGF-A121 is abundant in serum and plasma from healthy individuals. PLoS One. 2023;18(4):e0284131. [56] MAMER SB, WITTENKELLER A, IMOUKHUEDE PI. VEGF-A splice variants bind VEGFRs with differential affinities. Sci Rep. 2020;10(1):14413. [57] AULICINO F, PEDONE E, SOTTILE F, et al. Canonical Wnt Pathway Controls mESC Self-Renewal Through Inhibition of Spontaneous Differentiation via β-Catenin/TCF/LEF Functions. Stem Cell Reports. 2020; 15(3):646-661. [58] HUSSAIN N, MUMTAZ M, ADIL M, et al. Investigation of VEGF (rs 699947) polymorphism in the progression of Rheumatoid Arthritis (RA) and in-silico nanoparticle drug delivery of potential phytochemicals to cure RA. Acta Biochim Pol. 2023;70(3):591-598. [59] PEI YA, CHEN S, PEI M. The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci. 2022;79(1):71. [60] TROMPETER N, GARDINIER JD, DEBARROS V, et al. Insulin-like growth factor-1 regulates the mechanosensitivity of chondrocytes by modulating TRPV4. Cell Calcium. 2021; 99:102467. [61] RAHMAN MM, WATTON PN, NEU CP, et al. A chemo-mechano-biological modeling framework for cartilage evolving in health, disease, injury, and treatment. Comput Methods Programs Biomed. 2023;231: 107419. [62] QIAN Z, GAO X, JIN X, et al. Cartilage-specific deficiency of clock gene Bmal1 accelerated articular cartilage degeneration in osteoarthritis by up-regulation of mTORC1 signaling. Int Immunopharmacol. 2023;115:109692. [63] CHE X, JIN X, PARK NR, et al. Cbfβ Is a Novel Modulator against Osteoarthritis by Maintaining Articular Cartilage Homeostasis through TGF-β Signaling. Cells. 2023;12(7):1064. [64] MA G, YANG Y, CHEN Y, et al. Blockade of TRPM7 Alleviates Chondrocyte Apoptosis and Articular Cartilage Damage in the Adjuvant Arthritis Rat Model Through Regulation of the Indian Hedgehog Signaling Pathway. Front Pharmacol. 2021;12:655551. [65] DENG H, XIAO X, CHILUFYA MM, et al. Altered Expression of the Hedgehog Pathway Proteins BMP2, BMP4, SHH, and IHH Involved in Knee Cartilage Damage of Patients With Osteoarthritis and Kashin-Beck Disease. Cartilage. 2022;13(1):19476035221087706. [66] LI M, ZHANG FJ, BAI RJ. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J Inflamm Res. 2024; 17:1105-1120. [67] ZHANG Y, ZUO T, MCVICAR A, et al. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis. Bone Res. 2022;10(1):63. [68] YUAN LB, JIN T, YAO L, et al. The role and mechanism of biological collagen membranes in repairing cartilage injury through the p38MAPK signaling pathway. J Orthop Surg Res. 2023;18(1):837. [69] LIN W, KANG H, DAI Y, et al. Early patellofemoral articular cartilage degeneration in a rat model of patellar instability is associated with activation of the NF-κB signaling pathway. BMC Musculoskelet Disord. 2021;22(1):90. [70] ZHANG W, ZHENG X, GONG Y, et al. VX-11e protects articular cartilage and subchondral bone in osteoarthritis by inhibiting the RIP1/RIP3/MLKL and MAPK signaling pathways. Bioorg Chem. 2022;120:105632. [71] QI F, CUI SL, ZHANG B, et al. T-2 toxin-induced damage to articular cartilage in rats coincided with impaired autophagy linked to the HIF-1α/AMPK signaling axis. Toxicon. 2024;243:107735. [72] SIDDIQ MAB, JAHAN I, RASKER JJ. Statin in Clinical and Preclinical Knee Osteoarthritis-What E vidence Exists for Future Clinical Use?-A Literature Review. Curr Rheumatol Rev. 2023;19(3):270-280. [73] SUN X, LONG R, CHEN Q, et al. miR-378a-3p Regulates the BMP2-Smad Pathway to Promote Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells. Cell Biochem Biophys. 2025;83(1):1277-1288. [74] YADAV PS, PAPAIOANNOU G, KOBELSKI MM, et al. Phosphate-induced activation of VEGFR2 leads to caspase-9-mediated apoptosis of hypertrophic chondrocytes. iScience. 2023;26(9):107548. [75] MCKENZIE JA, GALBREATH IM, COELLO AF, et al. VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading. Bone. 2022;163:116502. [76] MCCANN M, LI Y, BACCOUCHE B, et al. VEGF Induces Expression of Genes That Either Promote or Limit Relaxation of the Retinal Endothelial Barrier. Int J Mol Sci. 2023;24(7):6402. [77] GROSSO A, LUNGER A, BURGER MG, et al. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen Med. 2023; 8(1):15. [78] ETSCHMAIER V, ÜÇAL M, LOHBERGER B, et al. Ex vivo organotypic bone slice culture reveals preferential chondrogenesis after sustained growth plate injury. Cells Dev. 2024;179:203927. [79] DI MAGGIO N, BANFI A. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Curr Opin Biotechnol. 2022;76:102750. [80] LEES-SHEPARD JB, FLINT K, FISHER M, et al. Cross-talk between EGFR and BMP signals regulates chondrocyte maturation during endochondral ossification. Dev Dyn. 2022;251(1):75-94. [81] SINHA A, IYENGAR PV, TEN DIJKE P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci. 2021;22(2):476. [82] HE Q, CHEN Z, LI J, et al. SENP6-Mediated deSUMOylation of VEGFR2 Enhances Its Cell Membrane Transport in Angiogenesis. Int J Mol Sci. 2023;24(3):2544. [83] QIU J, FAN X, DING H, et al. Antenatal dexamethasone retarded fetal long bones growth and development by down-regulating of insulin-like growth factor 1 signaling in fetal rats. Hum Exp Toxicol. 2022;41:9603271211072870. [84] HUYGENS C, RIBEIRO LOPES M, GAGET K, et al. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum. Insect Biochem Mol Biol. 2022;141:103670. [85] TAO D, ZHANG L, DING Y, et al. Primary cilia support cartilage regeneration after injury. Int J Oral Sci. 2023;15(1):22. [86] DREYER CH, KJAERGAARD K, DING M, et al. Vascular endothelial growth factor for in vivo bone formation: A systematic review. J Orthop Translat. 2020;24:46-57. [87] SAETAN N, HONSAWEK S, TANAVALEE A, et al. Association between Common Variants in VEGFA Gene and the Susceptibility of Primary Knee Osteoarthritis. Cartilage. 2022;13(4):66-76. [88] MA L, ZHAO X, LIU Y, et al. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med. 2021;47(3):04855. [89] HORVÁTH E, SÓLYOM Á, SZÉKELY J, et al. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci. 2023;24(22):16468. [90] 陈德胜,张学森,张晨,等.MMP-9和VEGF在膝关节骨性关节炎软骨中的表达及意义[J].宁夏医科大学学报,2020, 42(7):678-682 [91] ZHANG H, HU S, SANCHES JGP, et al. Sorcin promotes proliferation of hepatocellular carcinoma by regulating VEGFA/B via PI3K pathway. J Physiol Biochem. 2024;80(2): 381-392. [92] LI J, ZHANG W, LIU X, et al. Endothelial Stat3 activation promotes osteoarthritis development. Cell Prolif. 2023;56(12): e13518. [93] XIAO H, LIU S, FANG B, et al. Panax notoginseng saponins promotes angiogenesis after cerebral ischemia-reperfusion injury. J Ginseng Res. 2024; 48(6):592-602. [94] ZHAO Y, FU B, CHEN P, et al. Activated mesangial cells induce glomerular endothelial cells proliferation in rat anti-Thy-1 nephritis through VEGFA/VEGFR2 and Angpt2/Tie2 pathway. Cell Prolif. 2021; 54(6):e13055. [95] XIONG G, YANG Y, GUO M. Effect of resveratrol on abnormal bone remodeling and angiogenesis of subchondral bone in osteoarthritis. Int J Clin Exp Pathol. 2021; 14(4):417-425. [96] ABBADESSA A, NUÑEZ BERNAL P, BUTTITTA G, et al. Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis. J Control Release. 2023;360: 747-758. [97] MA K, PHAM T, WANG J, et al. Nanoparticle-based inhibition of vascular endothelial growth factor receptors alleviates osteoarthritis pain and cartilage damage. Sci Adv. 2024;10(7):eadi5501. [98] VASUDEVAN MT, RANGARAJ K, RAMESH R, et al. Inhibitory effects of Gracilaria edulis and Gracilaria salicornia against the MGMT and VEGFA biomarkers involved in the onset and advancement of glioblastoma using in silico and in vitro approaches. Biotechnol Appl Biochem. 2025;72(1):207-224. [99] ABDELGALIL AA, MONIR R, ELMETWALLY M, et al. The Relation of VEGFA, VEGFR2, VEGI, and HIF1A Genetic Variants and Their Serum Protein Levels with Breast Cancer in Egyptian Patients. Biochem Genet. 2024; 62(1):547-573. [100] MAO X, YAN X, LI C, et al. Extensive preclinical evaluation of combined mangiferin and glycyrrhizic acid for restricting synovial neovascularization in rheumatoid arthritis. Chin Med. 2023; 18(1):156. [101] HANLON MM, CANAVAN M, BARKER BE, et al. Metabolites as drivers and targets in rheumatoid arthritis. Clin Exp Immunol. 2022;208(2):167-180. [102] SCURUCHI M, ALIQUÒ F, AVENOSO A, et al. Endocan Knockdown Down-Regulates the Expression of Angiogenesis-Associated Genes in Il-1ß Activated Chondrocytes. Biomolecules. 2023;13(5):851. [103] ZHANG Z, WANG G, ZHANG Z, et al. Locally administered liposomal drug depot enhances rheumatoid arthritis treatment by inhibiting inflammation and promoting cartilage repair. J Nanobiotechnology. 2025;23(1):69. [104] ACHUDHAN D, LIU SC, LIN YY, et al. Antcin K inhibits VEGF-dependent angiogenesis in human rheumatoid arthritis synovial fibroblasts. J Food Biochem. 2022;46(1): e14022. [105] YILDIRIM A, ÖNDER ME, ÖZKAN D. Ultrasonographic evaluation of distal femoral and talar cartilage thicknesses in patients with early rheumatoid arthritis and their relationship with disease activity. Clin Rheumatol. 2022;41(7):2001-2007. [106] LI K, WANG Y, HUANG P. Association of Four VEGFA Gene Variants with Rheumatoid Arthritis Risk: A Meta-analysis and Trial Sequential Analysis. Biochem Genet. 2025; 63(2):984-1013. [107] 韦宜山,刘万林,丁良甲,等.发育性髋脱位髋臼软骨细胞病理学改变的实验研究[J].内蒙古医学院学报,2012,34(6):447-452. [108] WANG CL, ZUO B, LI D, et al. The long noncoding RNA H19 attenuates force-driven cartilage degeneration via miR-483-5p/Dusp5. Biochem Biophys Res Commun. 2020;529(2):210-217. [109] FLORENCIO-SILVA R, SASSO GRDS, SASSO-CERRI E, et al. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat. 2025;257:152318. [110] UTSUNOMIYA H, GAO X, CHENG H, et al. Intra-articular Injection of Bevacizumab Enhances Bone Marrow Stimulation-Mediated Cartilage Repair in a Rabbit Osteochondral Defect Model. Am J Sports Med. 2021;49(7):1871-1882. [111] ALTER T, FITCH A, BAILEY TERHUNE E, et al. The economics of patients undergoing periacetabular osteotomy for hip dysplasia: the financial relationship between physicians and hospitals. J Hip Preserv Surg. 2022;9(4):225-231. [112] KIM YJ. Hip Osteoarthritis: Bench to Bedside Perspective. Adv Exp Med Biol. 2023;1402:125-133. [113] HASEEB A, KC R, ANGELOZZI M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A. 2021;118(8):e2019152118. [114] LIN X, BELL RD, CATHELINE SE, et al. Targeting Synovial Lymphatic Function as a Novel Therapeutic Intervention for Age-Related Osteoarthritis in Mice. Arthritis Rheumatol. 2023;75(6):923-936. [115] FUCHS B, BIRT A, MOELLHOFF N, et al. The use of commercial fibrin glue in dermal replacement material reduces angiogenic and lymphangiogenic gene and protein expression in vitro. J Biomater Appl. 2023; 37(10):1858-1873. [116] LIU Y, DA W, XU MJ, et al. Single-cell transcriptomics reveals novel chondrocyte and osteoblast subtypes and their role in knee osteoarthritis pathogenesis. Signal Transduct Target Ther. 2025;10(1):40. [117] HOUTMAN E, TUERLINGS M, RIECHELMAN J, et al. Elucidating mechano-pathology of osteoarthritis: transcriptome-wide differences in mechanically stressed aged human cartilage explants. Arthritis Res Ther. 2021;23(1):215. |
| [1] | 张 楠, 孟庆华, 鲍春雨. 踝关节有限元模型的特性及临床应用[J]. 中国组织工程研究, 2026, 30(9): 2343-2349. |
| [2] | 陈秋函, 杨 龙, 袁代柱, 吴展羽, 邹梓豪, 叶 川. 膝关节周围截骨治疗膝骨关节炎:治疗策略的优化[J]. 中国组织工程研究, 2026, 30(9): 2303-2312. |
| [3] | 张子峥, 罗 旺, 刘长路. 膝内侧间室骨关节炎单髁置换中有限元分析的应用价值[J]. 中国组织工程研究, 2026, 30(9): 2313-2322. |
| [4] | 黎清斌, 林建辉, 黄文杰, 王明爽, 杜间开, 劳永锵. 膝关节周围骨巨细胞瘤病灶扩大刮除后填充骨水泥:软骨下植骨与不植骨的比较[J]. 中国组织工程研究, 2026, 30(8): 1896-1902. |
| [5] | 陈豪杰, 王 黛, 沈 山. 种植体周围炎中的免疫炎症微环境机制[J]. 中国组织工程研究, 2026, 30(8): 2054-2062. |
| [6] | 胡雄科, 刘少华, 谭 谦, 刘 昆, 朱光辉. 紫草素干预骨髓间充质干细胞改善老年小鼠股骨的微结构[J]. 中国组织工程研究, 2026, 30(7): 1609-1615. |
| [7] | 宋浦蓁, 马贺宾, 陈宏广, 章亚东. 骨髓间充质干细胞外泌体联合转化生长因子β1对巨噬细胞的作用[J]. 中国组织工程研究, 2026, 30(7): 1616-1623. |
| [8] | 韩念荣, 黄异飞, 艾克热木·吾斯曼, 刘岩路, 胡 炜. 高糖微环境中程序性细胞死亡受体1抑制大鼠骨髓间充质干细胞的成骨分化[J]. 中国组织工程研究, 2026, 30(7): 1649-1657. |
| [9] | 刘安婷, 陆江涛, 张文杰, 贺 玲, 唐宗生, 陈晓玲. 血小板裂解物调控腺苷酸活化蛋白激酶抑制镉诱导的神经细胞凋亡[J]. 中国组织工程研究, 2026, 30(7): 1800-1807. |
| [10] | 李林臻, 焦泓焯, 陈伟南, 张铭哲, 王建龙, 张君涛. 淫羊藿苷含药血清对脂多糖诱导人软骨细胞炎症损伤的影响[J]. 中国组织工程研究, 2026, 30(6): 1368-1374. |
| [11] | 陈 驹, 郑锦畅, 梁 振, 黄成硕, 林 颢, 曾 莉. β-石竹烯对小鼠膝骨关节炎的作用及机制[J]. 中国组织工程研究, 2026, 30(6): 1341-1347. |
| [12] | 吕国庆, 艾孜麦提江·肉孜, 熊道海. 鸢尾素抑制人关节软骨细胞中铁死亡的作用及其机制[J]. 中国组织工程研究, 2026, 30(6): 1359-1367. |
| [13] | 彭志伟, 陈 雷, 佟 磊. 木犀草素促进糖尿病小鼠创面愈合的作用与机制[J]. 中国组织工程研究, 2026, 30(6): 1398-1406. |
| [14] | 朱奎成, 杜春燕, 章金涛. 无毛基因突变促进无毛小鼠白色脂肪组织褐变的作用机制[J]. 中国组织工程研究, 2026, 30(6): 1424-1430. |
| [15] | 李 豪, 陶红成, 曾 平, 刘金富, 丁 强, 牛驰程, 黄 凯, 康宏誉. 丝裂原活化蛋白激酶信号通路调控骨关节炎的发生发展:指导中药靶点治疗[J]. 中国组织工程研究, 2026, 30(6): 1476-1485. |
1.3 文献质量评价和筛选 共检索到9 663篇文献,初筛剔除重复文献后,通过泛读剩余文献的标题、摘要进行筛选,无法判别时精读全文,选取与主题更为相符的文献,最终纳入符合要求的文献117篇,包括英文文献112篇、中文文献5篇。文献筛选流程详见图1。
本文深入探讨了血管内皮生长因子A在关节软骨发育及相关疾病中的多维度调控机制,为理解软骨发育的分子基础及探索新型治疗靶点提供了重要理论依据。文章系统梳理了血管内皮生长因子A在胚胎期软骨模板形成、生长板重塑及成年软骨稳态维持中的时空特异性作用,揭示了其通过非血管依赖性机制直接调控软骨细胞分化与基质代谢的复杂网络。这一发现突破了传统认知中软骨作为无血管组织的限制,强调了血管内皮生长因子A在软骨发育中的多效性与关键性。文章的创新之处在于综合分析了血管内皮生长因子A信号通路的多个层面,包括受体互作网络的时空特异性、剪切异构体的功能分化以及力学-生化耦合机制。通过整合单细胞转录组学、表观遗传学及临床样本分析等多维度数据,作者构建了一个全面的血管内皮生长因子A调控网络,为软骨发育的分子机制研究提供了新的视角。特别是在疾病关联层面,文章详细剖析了血管内皮生长因子A在骨关节炎、类风湿性关节炎和髋关节发育不良等疾病中的双向调控作用,揭示了其浓度依赖性、信号通路串扰及治疗靶点的复杂性。此外,文章还探讨了血管内皮生长因子A靶向治疗的潜力与挑战,指出了当前技术瓶颈,如递送系统的时空特异性不足、基因编辑的脱靶风险以及个体化治疗的分子分型缺失。这些内容不仅为临床转化提供了理论支撑,也为未来的研究方向指明了道路。总体而言,本文通过系统性分析血管内皮生长因子A在软骨发育及疾病中的作用机制,为骨科领域的基础研究与临床应用提供了重要的参考,具有较高的学术价值与临床指导意义。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||