[1] 胡芳茴, 李丽蔚, 杨霞, 等. 抑制TBK1通过调节mTORC1信号通路减轻肺泡巨噬细胞中NLRP3介导的细胞焦亡[J/OL]. 中国免疫学杂志, 1-10[2025-02-24]. http://kns.cnki.net/kcms/detail/22.1126.R.20250124.1616.006.html.
[2] RUNDE A P, MACK R, S J PB, et al. The role of TBK1 in cancer pathogenesis and anticancer immunity [J]. J Exp Clin Cancer Res, 2022, 41(1): 135.
[3] MIRANDA A, SHIRLEY C A, JENKINS R W. Emerging roles of TBK1 in cancer immunobiology [J]. Trends Cancer, 2024, 10(6): 531-540.
[4] ZHANG M, ZOU Y, ZHOU X, et al. Inhibitory targeting cGAS-STING-TBK1 axis: emerging strategies for autoimmune diseases therapy [J]. Front Immunol, 2022, 13: 954129.
[5] 王悦宸, 侯亚威, 王振国. 基于文献计量学的丹参研究现状与热点分析[J]. 中草药, 2025, 56(4): 1318-1337.
[6] 江宇慧, 朱明玉, 张景景, 等. 基于文献计量学分析近10年药用植物组织培养的研究趋势[J]. 世界科学技术-中医药现代化, 2025, 27(1): 98-109.
[7] 李进鹏, 曹妍, 赵奕雯, 等. 基于文献计量学的国内外药食同源及食疗领域研究热点分析[J]. 护理研究, 2024, 38(19): 3457-3467.
[8] 张建, 杨卫华, 刘萍, 等. 海洋固碳研究进展—基于Citespace的可视化分析[J]. 海洋湖沼通报(中英文), 2024, 46(4): 135-142.
[9] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1-12.
[10] 徐灿丽, 何文星, 汪磊, 等. 肝脏类器官研究的文献计量学分析[J]. 中国组织工程研究, 2024, 28(7): 1099-1104.
[11] 谭令, 龙霖梓, 邓秘, 等. 抗血小板活化的文献计量学及可视化分析[J]. 世界科学技术-中医药现代化, 2022, 24(1): 195-208.
[12] 王晗, 李春辉, 孙海玮. 远隔缺血适应相关研究的文献计量学和可视化分析[J]. 中国脑血管病杂志, 2025, 22(2): 89-98.
[13] 王勇, 李宏宇, 刘雨航, 等. 股骨头坏死手术治疗知识图谱:2005-2024数据的文献计量学分析[J]. 中国组织工程研究, 2025, 29(33): 7250-7260.
[14] 郭萌, 吴文, 李敬文, 等. 基于文献计量学的“结核”主题高被引文献特征分析[J]. 中国防痨杂志, 2024, 46(5): 567-577.
[15] ZHANG C, SHANG G, GUI X, et al. Structural basis of STING binding with and phosphorylation by TBK1 [J]. Nature, 2019, 567(7748): 394-398.
[16] LIU S, CAI X, WU J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation [J]. Science, 2015, 347(6227): aaa2630.
[17] FREISCHMIDT A, WIELAND T, RICHTER B, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia [J]. Nat Neurosci, 2015, 18(5): 631-636.
[18] HOPFNER K P, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling [J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521.
[19] GUI X, YANG H, LI T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway [J]. Nature, 2019, 567(7747): 262-266.
[20] REVACH O Y, LIU S, JENKINS R W. Targeting TANK-binding kinase 1 (TBK1) in cancer [J]. Expert Opin Ther Targets, 2020, 24(11): 1065-1078.
[21] HU L, ZHANG Q. Mechanism of TBK1 activation in cancer cells [J]. Cell Insight, 2024, 3(5): 100197.
[22] HUANG X, HUO L, XIAO B, et al. Activating STING/TBK1 suppresses tumor growth via degrading HPV16/18 E7 oncoproteins in cervical cancer [J]. Cell Death Differ, 2024, 31(1): 78-89.
[23] ALAM M, HASAN G M, HASSAN M I. A review on the role of TANK-binding kinase 1 signaling in cancer [J]. Int J Biol Macromol, 2021, 183: 2364-2375.
[24] ZHAO C, ZHAO W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases [J]. Expert Opin Ther Targets, 2019, 23(5): 437-446.
[25] LAN J, DENG Z, WANG Q, et al. Neuropeptide substance P attenuates colitis by suppressing inflammation and ferroptosis via the cGAS-STING signaling pathway [J]. Int J Biol Sci, 2024, 20(7): 2507-2531.
[26] DU S S, CHEN G W, YANG P, et al. Radiation Therapy Promotes Hepatocellular Carcinoma Immune Cloaking via PD-L1 Upregulation Induced by cGAS-STING Activation [J]. Int J Radiat Oncol Biol Phys, 2022, 112(5): 1243-1255.
[27] 龙昊, 吴怡林, 龚建平. TBK1在炎症性疾病发生机制中的作用[J]. 重庆医学, 2020, 49(20): 3472-3475+3480.
[28] DUAN Q Q, WANG H, SU W M, et al. TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: evidence from druggable genome Mendelian randomization and pharmacological verification in vitro [J]. BMC Med, 2024, 22(1): 96.
[29] ZHAO X, CAO Y, LU R, et al. Phosphorylation of AGO2 by TBK1 Promotes the Formation of Oncogenic miRISC in NSCLC [J]. Adv Sci (Weinh), 2024, 11(15): e2305541.
[30] GAO CQ, CHU ZZ, ZHANG D, et al. Serine/threonine kinase TBK1 promotes cholangiocarcinoma progression via direct regulation of β-catenin [J]. Oncogene, 2023, 42(18): 1492-1507.
[31] QIAN Y, YAO W, YANG T, et al. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma [J]. Hepatology, 2017, 66(4): 1165-1182.
[32] YANG S, IMAMURA Y, JENKINS RW, et al. Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation [J]. Cancer Immunol Res, 2016, 4(6): 520-30.
[33] SIDDIQUI AJ, JAMAL A, ZAFAR M, et al. Identification of TBK1 inhibitors against breast cancer using a computational approach supported by machine learning [J]. Front Pharmacol, 2024, 15: 1342392.
[34] ZHU L, LI Y, XIE X, et al. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis [J]. Nat Cell Biol, 2019, 21(12): 1604-1614.
[35] CAI H, YAN L, LIU N, et al. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway [J]. Biomed Pharmacother, 2020, 123: 109790.
[36] JIANG Y, CHEN S, LI Q, et al. TANK-Binding Kinase 1 (TBK1) Serves as a Potential Target for Hepatocellular Carcinoma by Enhancing Tumor Immune Infiltration [J]. Front Immunol, 2021, 12: 612139.
[37] VAN DAELE SH, MOISSE M, VAN VUGT JJFA, et al. Genetic variability in sporadic amyotrophic lateral sclerosis [J]. Brain, 2023, 146(9): 3760-3769.
[38] GURFINKEL Y, POLAIN N, SONAR K, et al. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J]. Neurobiol Dis, 2022, 174: 105859.
[39] CIRULLI ET, LASSEIGNE BN, PETROVSKI S, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways [J]. Science, 2015, 347(6229): 1436-41.
[40] WEINREICH M, SHEPHEARD SR, VERBER N, et al. Neuropathological characterization of a novel TANK binding kinase (TBK1) gene loss of function mutation associated with amyotrophic lateral sclerosis [J]. Neuropathol Appl Neurobiol, 2020, 46(3): 279-291.
[41] AHMAD L, ZHANG SY, CASANOVA JL, et al. Human TBK1: A Gatekeeper of Neuroinflammation [J]. Trends Mol Med, 2016, 22(6): 511-527.
[42] LI Q, LIU Y, XIA X, et al. Activation of macrophage TBK1-HIF-1α-mediated IL-17/IL-10 signaling by hyperglycemia aggravat es the complexity of coronary atherosclerosis: An in vivo and in vitro study [J]. FASEB J, 2021, 35(5): e21609.
[43] ZHAO P, SUN X, LIAO Z, et al. The TBK1/IKKε inhibitor amlexanox improves dyslipidemia and prevents atherosclerosis [J]. JCI Insight, 2022, 7(17): e155552.
[44] SUN Y, REVACH O Y, ANDERSON S, et al. Targeting TBK1 to overcome resistance to cancer immunotherapy [J]. Nature, 2023, 615(7950): 158-167.
[45] MAAN M, JAISWAL N, LIU M, et al. TBK1 reprograms metabolism in breast cancer: an integrated omics approach [J]. J Proteome Res, 2025, 24(1): 121-133.
[46] MA X, JIA S, WANG G, et al. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance [J]. Signal Transduct Target Ther, 2023, 8(1): 246.
[47] MAAN M, AGRAWAL NJ, PADMANABHAN J, et al. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells [J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(3): 118929.
[48] LEFRANC J, SCHULZE VK, HILLIG RC, et al. Discovery of BAY-985, a Highly Selective TBK1/IKKε Inhibitor [J]. J Med Chem, 2020, 63(2): 601-612.
[49] SHIN J, LIM J, HAN D, et al. TBK1 inhibitor amlexanox exerts anti-cancer effects against endometrial cancer by regulating AKT/NF-κB signaling [J]. Int J Biol Sci, 2025, 21(1): 143-159.
[50] LIN KX, ISTL AC, QUAN D, et al. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies [J]. Cancer Immunol Immunother, 2023, 72(12): 3875-3893.
[51] VESELY MD, ZHANG T, CHEN L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy [J]. Annu Rev Immunol, 2022, 40: 45-74. |