[1] DORSEY ER, BLOEM BR. The Parkinson Pandemic—A Call to Action. JAMA Neurol. 2018;75(1):9.
[2] INGELSSON M. Alpha-Synuclein Oligomers-Neurotoxic Molecules in Parkinson’s Disease and Other Lewy Body Disorders. Front Neurosci. 2016;10:408.
[3] SCHAPIRA AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7(1):97-109.
[4] ZHANG L, GUO Z, WANG Y, et al. The protective effect of kaempferol on heart via the regulation of Nrf2, NF‐κβ, and PI3K/Akt/GSK‐3β signaling pathways in isoproterenol‐induced heart failure in diabetic rats. Drug Dev Res. 2019;80(3):294-309.
[5] CHEN N, HU M, JIANG T, et al. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym. 2024;333:122003.
[6] SHAN HUANG S, ZHOU B, XIAN ZENG G, et al. Neuroprotective effect and mechanism of butylphthalide after cerebral ischemia-reperfusion injury in rats. Folia Neuropathol. 2021;59(2):131-142.
[7] ZHAO F, LUO Y. Potential Protective Effect of Dl-3-n-butylphthalide on Chronic Cerebral Ischemia Brain Injury. CNS Neurol Disord Drug Targets. 2022;21(9):734-737.
[8] HUANG Y, PAN L, WU T. Improvement of cerebral ischemia-reperfusion injury by L-3-n-butylphthalide through promoting angiogenesis. Exp Brain Res. 2021;239(1):341-350.
[9] LI F, MA Q, ZHAO H, et al. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metab Brain Dis. 2018; 33(6):1995-2003.
[10] NIU XL, JIANG X, XU GD, et al. DL-3-n-butylphthalide alleviates vascular cognitive impairment by regulating endoplasmic reticulum stress and the Shh/Ptch1 signaling-pathway in rats. J Cell Physiol. 2019;234(8):12604-12614.
[11] BAI M, PAN CL, JIANG GX, et al. Effects of butylphthalide on oxidative stress and inflammatory response in rats with myocardial infarction through Akt/Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(21):9642-9650.
[12] WANG BN, WU CB, CHEN ZM, et al. DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacol Sin. 2021;42(3):347-360.
[13] LIU T, WANG P, Yin H, et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson’s disease. Neural Regen Res. 2023;18(11):2514-2519.
[14] FANG Y, ZHENG Y, GAO Q, et al. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep. 2024; 29(1):2394714.
[15] CHEN N, ZHOU Z, LI J, et al. 3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Dev Ther. 2021;42(3):347-360.
[16] 白延璐,张阔,张宇,等.基于网络药理学和分子对接技术探究百合固金汤在肺结核治疗中的作用[J].解剖科学进展,2024,30(6): 593-598.
[17] 韩泽璐,沈丽萍,姜怡,等.基于UPLC-Q-TOF-MS联合网络药理学和分子对接技术探讨益气养阴方治疗非小细胞肺癌的潜在作用机制[J].新中医,2024,56(20):156-168.
[18] MURAKAMI S, KUSANO Y, OKAZAKI K, et al. NRF2 signalling in cytoprotection and metabolism. Br J Pharmacol. 2023. doi: 10.1111/bph.16246.
[19] BRACKHAN M, ARRIBAS-BLAZQUEZ M, LASTRES-BECKER I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel). 2023;12(8):1564.
[20] WANG J, CAO Y, LU Y, et al. Recent progress and applications of small molecule inhibitors of Keap1–Nrf2 axis for neurodegenerative diseases. Eur J Med Chem. 2024;264:115998.
[21] ANANDHAN A, CHEN W, NGUYEN N, et al. α-Syn overexpression, NRF2 suppression, and enhanced ferroptosis create a vicious cycle of neuronal loss in Parkinson’s disease. Free Radic Biol Med. 2022; 192:130-140.
[22] AMOROSO R, MACCALLINI C, BELLEZZA I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants. 2023;12(3):778.
[23] YAN R, LIN B, JIN W, et al. NRF2, a Superstar of Ferroptosis. Antioxidants. 2023;12(9): 1739.
[24] MAYER C, RIERA-PONSATI L, KAUPPINEN S, et al. Targeting the NRF2 pathway for disease modification in neurodegenerative diseases: mechanisms and therapeutic implications. Front Pharmacol. 2024;15: 1437939.
[25] SAHA S, BUTTARI B, PROFUMO E, et al. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases. Front Cell Neurosci. 2021;15:787258.
[26] WANG L, ZHANG X, XIONG X, et al. Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants. 2022;11(12):2377.
[27] LEKSHMI VS, ASHA K, SANICAS M, et al. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci. 2023;10:1158133.
[28] MANNING BD, TOKER A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169(3):381-405.
[29] 胡琪,陶雪,蒋敏,等.丁苯酞治疗帕金森病研究进展[J].医药导报,2023,42(2):203-207.
[30] 谷伟,孙梓旭,孙光宁,等.丁苯酞联合重复经颅磁刺激治疗对帕金森病患者认知功能和脑血流动力学的影响[J].中国实用神经疾病杂志,2024,27(5):573-577.
[31] MALAGELADA C, JIN ZH, GREENE LA. RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci. 2008;28(53):14363-14371.
[32] FAHMY MI, KHALAF SS, ELRAYESS RA. The neuroprotective effects of alpha lipoic acid in rotenone-induced Parkinson’s disease in mice via activating PI3K/AKT pathway and antagonizing related inflammatory cascades. Eur J Pharmacol. 2024;980:176878.
[33] ARAB HH, SAFAR MM, SHAHIN NN. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson’s Disease Rat Model. ACS Chem Neurosci. 2021;12(4): 689-703.
[34] ROJO AI, SAGARRA MR, CUADRADO A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem. 2008;105(1): 192-202.
[35] YE Z, LI C, LIU S, et al. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis. Chem Biol Interact. 2023;382:110604.
[36] LIU HB, LI QY, ZHANG XD, et al. The neuroprotective effects of Galectin-1 on Parkinson’s Disease via regulation of Nrf2 expression. Eur Rev Med Pharmacol Sci. 2022;26(2):623-636.
[37] NIU Y, ZHANG J, DONG M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl). 2021;99(7):917-931.
[38] GHAFOURI-FARD S, SHOOREI H, BAHROUDI Z, et al. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules. 2022;12(1):82.
[39] MORATILLA-RIVERA I, SÁNCHEZ M, VALDÉS-GONZÁLEZ J A, et al. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci. 2023;24(4):3748.
[40] CHEN Y, WU T, LI H, et al. Dl-3-n-Butylphthalide Exerts Dopaminergic Neuroprotection Through Inhibition of Neuroinflammation. Front Aging Neurosci. 2019;11:44.
[41] LUO R,ZHU L,ZENG Z, et al. Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway. Exp Ther Med. 2021;21(6):597.
[42] LIU Y, GONG Z, ZHAI D, et al. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain. 2024;25(1):50.
|