[1] BRENNAN MA, COOKSON BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31-40.
[2] GALLUZZI L, VITALE I, ABRAMS JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107-120.
[3] BERGSBAKEN T, FINK SL, COOKSON BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99-109.
[4] BERTHELOOT D, LATZ E, FRANKLIN BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106-1121.
[5] RAO Z, ZHU Y, YANG P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329.
[6] PAN Z, DONG H, HUANG N, et al. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol. 2022;13:953078.
[7] WANG Y, HE J, LIAO M, et al. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem. 2019;161:48-77.
[8] GROOTAERT MOJ, BENNETT MR. Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets. Nat Rev Cardiol. 2022;19(10):668-683.
[9] PALOMER X, AGUILAR-RECARTE D, GARCÍA R, et al. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy.Trends Mol Med. 2021;27(6):554-571.
[10] WANG M, LIN H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem. 2021;90:245-285.
[11] CHEN B, ZANG W, WANG J, et al. The chemical biology of sirtuins. Chem Soc Rev. 2015;44(15):5246-5264.
[12] HAN Y, SUN W, REN D, et al. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol. 2020;34:101538.
[13] SUTTERWALA FS, OGURA Y, SZCZEPANIK M, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006;24(3):317-327.
[14] MA MW, WANG J, DHANDAPANI KM, et al. NADPH Oxidase 2 Regulates NLRP3 Inflammasome Activation in the Brain after Traumatic Brain Injury. Oxid Med Cell Longev. 2017;2017:6057609.
[15] KELLEY N, JELTEMA D, DUAN Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328.
[16] KADONO K, KAGEYAMA S, NAKAMURA K, et al. Myeloid Ikaros-SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. J Hepatol. 2022;76(4):896-909.
[17] 钟泽,罗秀英,相鹏,等.组蛋白去乙酰化酶SIRT1对大鼠心肌缺血再灌注损伤介导的细胞焦亡调控作用[J].中华心血管病杂志(网络版), 2020,3(1):13.
[18] WANG Z, WEIZHONG G, ZHOU J, et al. Role and significance of SIRT1 in regulating the LPS-activated pyroptosis pathway in children with congenital hydronephrosis. World J Pediatr Surg. 2023;6(4):e000602.
[19] CHOU X, DING F, ZHANG X, et al. Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells. Arch Toxicol. 2019;93(4):965-986.
[20] 葛燕红.SIRT1调控的线粒体稳态在NaAsO_2致神经细胞焦亡中的作用[D].沈阳:中国医科大学,2023.
[21] LIAN L, LE Z, WANG Z, et al. SIRT1 Inhibits High Glucose-Induced TXNIP/NLRP3 Inflammasome Activation and Cataract Formation. Invest Ophthalmol Vis Sci. 2023;64(3):16.
[22] 龚琦,陈婷,周芝文,等. SIRT1对低氧诱导肺动脉内皮细胞损伤的保护作用及机制[J].山东医药,2023,63(10):44-48.
[23] MA Z, TANG P, DONG W, et al. SIRT1 alleviates IL-1β induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration. Int Immunopharmacol. 2022;107:108671.
[24] MULERO MC, HUANG DB, NGUYEN HT, et al. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. J Biol Chem. 2017;292(46):18821-18830.
[25] 刘佳. SIRT1通过去乙酰化NF-κB(p65)调控H2O2诱导的人主动脉内皮细胞焦亡的机制研究[D].长春:吉林大学,2022.
[26] 车益军,韩冲,于欣宇,等.五味子甲素通过SIRT1/NF-κB通路减轻脑出血后星形胶质细胞焦亡的机制[J].遵义医科大学学报,2023,46(11):1041-1049.
[27] ZHOU YL, YAN YM, LI SY, et al. 6-O-angeloylplenolin exerts neuroprotection against lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Acta Pharmacol Sin. 2020;41(1):10-21.
[28] WANG W, GONG QY, CAI L, et al. Knockout of Sirt2 alleviates traumatic brain injury in mice. Neural Regen Res. 2023;18(2):350-356.
[29] WANG S, ZHANG J, DENG X, et al. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Biochimie. 2020;179:1-13.
[30] YANG H, ZHOU Z, LIU Z, et al. Sirtuin-3: A potential target for treating several types of brain injury. Front Cell Dev Biol. 2023;11:1154831.
[31] GU J, HUANG H, LIU C, et al. Pinocembrin inhibited cardiomyocyte pyroptosis against doxorubicin-induced cardiac dysfunction via regulating Nrf2/Sirt3 signaling pathway. Int Immunopharmacol. 2021;95:107533.
[32] SUN Z, FANG C, XU S, et al. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem Pharmacol. 2023;207:115354.
[33] MARTINO E, BALESTRIERI A, ANASTASIO C, et al. SIRT3 Modulates Endothelial Mitochondrial Redox State during Insulin Resistance. Antioxidants (Basel). 2022;11(8):1611.
[34] ZHONG Z, GAO Y, ZHOU J, et al. Inhibiting mir-34a-5p regulates doxorubicin-induced autophagy disorder and alleviates myocardial pyroptosis by targeting Sirt3-AMPK pathway. Biomed Pharmacother. 2023;168:115654.
[35] FASANO C, DISCIGLIO V, BERTORA S, et al. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells. 2019; 8(9):1110.
[36] RANGARAJAN P, KARTHIKEYAN A, LU J, et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience. 2015;311:398-414.
[37] YANG H, DING C, CHENG M, et al. Perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. Sci Rep. 2023;13(1):21320.
[38] LI J, LI Y, WANG X, et al. Pinocembrin alleviates pyroptosis and apoptosis through ROS elimination in random skin flaps via activation of SIRT3. Phytother Res. 2023;37(9):4059-4075.
[39] WANG D, YUAN Q, LIU S, et al. BDE-47 flame retardant exposure induces microglial pyroptosis and cognitive deficits by activating the mtROS-NLRP3 axis via Sirt3 downregulation and is salvaged by honokiol. Environ Pollut. 2023;334:122158.
[40] WANG D, WU Y, SUN S, et al. NLRP3 inflammasome-mediated pyroptosis involvement in cadmium exposure-induced cognitive deficits via the Sirt3-mtROS axis. Sci Total Environ. 2023;903:166478.
[41] YU W, LYU J, JIA L, et al. Dexmedetomidine Ameliorates Hippocampus Injury and Cognitive Dysfunction Induced by Hepatic Ischemia/Reperfusion by Activating SIRT3-Mediated Mitophagy and Inhibiting Activation of the NLRP3 Inflammasome in Young Rats. Oxid Med Cell Longev. 2020;2020:7385458.
[42] NASRIN N, WU X, FORTIER E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285(42):31995-32002.
[43] HALASI M, GARTEL AL. Targeting FOXM1 in cancer. Biochem Pharmacol. 2013;85(5):644-652.
[44] LIAO GB, LI XZ, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal. 2018;16(1):57.
[45] WANG RT, MIAO RC, ZHANG X, et al. Fork head box M1 regulates vascular endothelial growth factor-A expression to promote the angiogenesis and tumor cell growth of gallbladder cancer. World J Gastroenterol. 2021;27(8):692-707.
[46] XU X, ZHANG L, HUA F, et al. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell Res. 2021;408(2):112863.
[47] MARTINO E, D’ONOFRIO N, BALESTRIERI A, et al. MiR-15b-5p and PCSK9 inhibition reduces lipopolysaccharide-induced endothelial dysfunction by targeting SIRT4. Cell Mol Biol Lett. 2023;28(1):66.
[48] SCHLICKER C, GERTZ M, PAPATHEODOROU P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790-801.
[49] WEI C, SHI M, DONG S, et al. SIRT5-related lysine demalonylation of GSTP1 contributes to cardiomyocyte pyroptosis suppression in diabetic cardiomyopathy. Int J Biol Sci. 2024;20(2):585-605.
[50] MOSTOSLAVSKY R, CHUA KF, LOMBARD DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006; 124(2):315-329.
[51] CHEN Y, CHEN J, SUN X, et al. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells. Aging Cell. 2020;19(8):e13185.
[52] KOROTKOV A, SELUANOV A, GORBUNOVA V. Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol. 2021;31(12):994-1006.
[53] LI X, LIU L, LI T, et al. SIRT6 in Senescence and Aging-Related Cardiovascular Diseases. Front Cell Dev Biol. 2021;9:641315.
[54] LI J, YU D, CHEN S, et al. Sirt6 opposes glycochenodeoxycholate-induced apoptosis of biliary epithelial cells through the AMPK/PGC-1α pathway. Cell Biosci. 2020;10:43.
[55] JIAO Y, ZHANG T, ZHANG C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356.
[56] XIAO T, WAN J, QU H, et al. Tripartite-motif protein 21 knockdown extenuates LPS-triggered neurotoxicity by inhibiting microglial M1 polarization via suppressing NF-κB-mediated NLRP3 inflammasome activation. Arch Biochem Biophys. 2021;706:108918.
[57] GE G, BAI J, WANG Q, et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci China Life Sci. 2022;65(3):588-603.
[58] HOU Y, SHI J, GUO Y, et al. DNMT1 regulates polarization of macrophage-induced intervertebral disc degeneration by modulating SIRT6 expression and promoting pyroptosis in vivo. Aging (Albany NY). 2023;15(10): 4288-4303.
[59] ZI Y, YI-AN Y, BING J, et al. Sirt6-induced autophagy restricted TREM-1-mediated pyroptosis in ox-LDL-treated endothelial cells: relevance to prognostication of patients with acute myocardial infarction. Cell Death Discov. 2019;5:88.
[60] YAO F, LV X, JIN Z, et al. Sirt6 inhibits vascular endothelial cell pyroptosis by regulation of the Lin28b/let-7 pathway in atherosclerosis. Int Immunopharmacol. 2022;110:109056.
[61] LIU K, WANG H, WANG Y, et al. Exploring the therapeutic potential of Sirt6-enriched adipose stem cell-derived exosomes in myocardial ischemia-reperfusion injury: unfolding new epigenetic frontiers. Clin Epigenetics. 2024;16(1):7.
[62] ZHANG M, LIU W, LIU Y, et al. Astragaloside IV Inhibited Podocyte Pyroptosis in Diabetic Kidney Disease by Regulating SIRT6/HIF-1α Axis. DNA Cell Biol. 2023;42(10):594-607.
[63] HE J, DENG Y, REN L, et al. Isoliquiritigenin from licorice flavonoids attenuates NLRP3-mediated pyroptosis by SIRT6 in vascular endothelial cells. J Ethnopharmacol. 2023;303:115952.
[64] VOELTER-MAHLKNECHT S, LETZEL S, MAHLKNECHT U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int J Oncol. 2006;28(4):899-908.
[65] MICHISHITA E, PARK JY, BURNESKIS JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623-4635.
[66] FORD E, VOIT R, LISZT G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075-1080.
[67] RAZA U, TANG X, LIU Z, et al. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev. 2024;104(1):253-280.
[68] TANG M, TANG H, TU B, et al. SIRT7: a sentinel of genome stability. Open Biol. 2021;11(6):210047.
[69] KUMARI P, TARIGHI S, BRAUN T, et al. SIRT7 Acts as a Guardian of Cellular Integrity by Controlling Nucleolar and Extra-Nucleolar Functions. Genes (Basel). 2021;12(9):1361.
[70] WU D, LI Y, ZHU KS, et al. Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front Endocrinol (Lausanne). 2018;9:652.
[71] MOHRIN M, SHIN J, LIU Y, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 2015;347(6228):1374-1377. |