中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (10): 2178-2188.doi: 10.12307/2025.402
• 生物材料综述 biomaterial review • 上一篇 下一篇
伍志鑫1,蒋雯雯2,詹健辉1,李杨书润1,任文燕1,王一宇1
收稿日期:
2024-02-29
接受日期:
2024-04-02
出版日期:
2025-04-08
发布日期:
2024-08-26
通讯作者:
王一宇,副教授,济宁医学院口腔医学院,山东省济宁市 272067
作者简介:
伍志鑫,男,2001年生,江西省景德镇市人,汉族,主要从事口腔医学研究。
基金资助:
Wu Zhixin1, Jiang Wenwen2, Zhan Jianhui1, Li Yangshurun1, Ren Wenyan1, Wang Yiyu1
Received:
2024-02-29
Accepted:
2024-04-02
Online:
2025-04-08
Published:
2024-08-26
Contact:
Wang Yiyu, Associate professor, School of Stomatology, Jining Medical University, Jining 272067, Shandong Province, China
About author:
Wu Zhixin, School of Stomatology, Jining Medical University, Jining 272067, Shandong Province, China
Supported by:
摘要:
文题释义:
口腔颌面部组织缺损:是一类由外伤、先天畸形、肿瘤切除等因素引起颌面部皮肤黏膜、牙齿、颌骨及牙周组织等组织或器官缺陷并导致功能障碍的常见疾病,对患者身心健康及生活质量产生严重影响。
水凝胶:是一种以水为分散介质的、极具亲水性的三维网状凝胶。由于交联网络结构的存在,使水凝胶具有较强的溶胀性和持水性,且不溶于水,能够模拟细胞外基质。此外,优异的生物相容性、机械可控性及刺激响应性使水凝胶在生物医学领域占据独特优势。
背景:水凝胶因优越的机械及生物性能在生物医学领域占据独特优势,已成为研究热点。目前水凝胶相关研究涉及组织工程和创口敷料等方面。
目的:综述水凝胶的优势性能与在口腔颌面部缺损修复领域中的应用研究进展,探讨水凝胶目前在应用推广中的局限以及在此领域所面临的挑战,为未来研究方向提供新思路。
方法:利用计算机检索PubMed、中国知网、万方数据库发表的相关文献,检索词为“水凝胶,口腔颌面部缺损,机械性能,组织工程,创口敷料”“hydrogel,oral and maxillofacial defects,mechanical properties,guided tissue regeneration,wound dressing”。通过阅读文题和摘要进行初步筛选,排除与文章主题不相关的文献,根据纳入标准和排除标准,最终纳入108篇文献进行结果分析。
结果与结论:①水凝胶具有良好的生物学活性、机械可控性及刺激响应等优势性能。②聚合物、金属和陶瓷联合制备的水凝胶复合物具有适当的机械性能、生物降解性以及可控的释放速率,契合颌面骨组织工程的需求。③纤维蛋白基水凝胶可填充穿过神经缺损区域的中空神经导管并促进轴突再生和生长从而恢复颌面神经功能。④控制纳米材料和水凝胶的相互作用可以改善肌纤维定向结构的形成以促进颌面肌组织再生。⑤多糖水凝胶,因具有控制药物递送和携带生物活性分子等作用,并且与其他材料联合应用可以产生与细胞外基质相匹配的最佳支架,因此逐渐成为修复不规则牙周缺损的首选。⑥磷酸钙或碳酸钙基水凝胶中填充不规则形状或精细的组织缺损并使牙体硬组织再矿化,自组装水凝胶制备简便且生物活性优良。⑦唾液腺来源的细胞外基质样凝胶有望参与许多唾液腺疾病的治疗。⑧水凝胶可作为伤口敷料结合生物黏合剂、脱细胞生物材料、抗微生物和抗氧化剂或干细胞等而被广泛用于治疗各种伤口。⑨纤维蛋白基水凝胶在口腔颌面部缺损修复中最具潜力,其具有优良的生物相容性、柔韧性和可塑性,可与细胞、细胞外基质蛋白和各种生长因子结合,能够促进间充质干细胞的成骨分化、轴突的再生与生长、血管生成、肌管分化、唾液腺组织再生和牙周组织再生,在口腔颌面部缺损组织的修复中具有广泛前景。然而其治疗效果取决于所携带物质的功能,复杂的制备工艺、安全性和长期疗效以及口腔颌面特殊的解剖结构是阻碍推广的难题,这也为未来的研究提供了方向。
https://orcid.org/0000-0002-7417-3065(王一宇);https://orcid.org/0009-0002-9426-1545(伍志鑫)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
伍志鑫, 蒋雯雯, 詹健辉, 李杨书润, 任文燕, 王一宇. 水凝胶:口腔颌面部组织缺损修复中的作用与问题[J]. 中国组织工程研究, 2025, 29(10): 2178-2188.
Wu Zhixin, Jiang Wenwen, Zhan Jianhui, Li Yangshurun, Ren Wenyan, Wang Yiyu. Hydrogels: role and problems in the repair of oral and maxillofacial defects[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(10): 2178-2188.
[1] HO TC, CHANG CC, CHAN HP, et al. Hydrogels: properties and applications in biomedicine. Molecules. 2022;27(9):2902. [2] HUYNH V, IFRAIMOV N, WYLIE RG. Modulating the thermoresponse of polymer-protein conjugates with hydrogels for controlled release. Polymers (Basel). 2021;13(16):2772. [3] WANG X, MA Y, LU F, et al. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci. 2023;11(8):2639-2660. [4] TONSOMBOON K, BUTCHER AL, OYEN ML. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Mater Sci Eng C Mater Biol Appl. 2017;72:220-227. [5] ZOU Z, LI H, XU G, et al. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. Int J Nanomedicine. 2023;18:4751-4778. [6] JU Y, HU Y, YANG P, et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2022;18:100522. [7] FREEDMAN BR, KUTTLER A, BECKMANN N, et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat Biomed Eng. 2022;6(10):1167-1179. [8] ZHU C, HUANG C, ZHANG W, et al. Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair. Int J Mol Sci. 2022; 23(15):8717. [9] NONOYAMA T, GONG JP. Tough Double Network Hydrogel and Its Biomedical Applications. Annu Rev Chem Biomol Eng. 2021;12:393-410. [10] RINOLDI C, LANZI M, FIORELLI R, et al. Three-dimensional printable conductive semi-interpenetrating polymer network hydrogel for neural tissue applications. Biomacromolecules. 2021;22(7):3084-3098. [11] FERCANA GR, YERNENI S, BILLAUD M, et al. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials. 2017; 123:142-154. [12] KIM S, MIN S, CHOI YS, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel fo r culturing gastrointestinal organoids. Nat Commun. 2022;13(1):1692. [13] LIU W, GAO R, YANG C, et al. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. Sci Adv. 2022;8(27):eabn7006. [14] SHAIK R, XU J, WANG Y, et al. Fibrin-enriched cardiac extracellular matrix hydrogel promotes in vitro angiogenesis. ACS Biomater Sci Eng. 2023;9(2):877-888. [15] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. [16] EFTEKHARI BS, ESKANDARI M, JANMEY PA, et al. Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Adv. 2021;11(26):15795-15807. [17] LU D, ZENG Z, GENG Z, et al. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes forin vitroandin vivoevaluation of vascular ization. Biomed Mater. 2022. doi: 10.1088/1748-605X/ac494b. [18] VINING KH, MARNETH AE, ADU-BERCHIE K, et al. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nat Mater. 2022;21(8):939-950. [19] ZHAO D, WANG X, CHENG B, et al. Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alg inate hydrogels for bone repair. ACS Appl Mater Interfaces. 2022;14(19):21886-21905. [20] 王中汉.基于多糖水凝胶构建的硬度差异细胞微环境调控骨髓间充质干细胞成骨分化及骨整合的实验研究[D].长春:吉林大学, 2022. [21] CHANG S, WANG S, LIU Z, et al. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering. Gels. 2022; 8(6):389. [22] MARTWONG E, TRAN Y. Lower critical solution temperature phase transition of poly (PEGMA) hydrogel thin films. Langmuir. 2021;37(28): 8585-8593. [23] SHI J, YU L, DING J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021;128:42-59. [24] LAVANYA K, CHANDRAN SV, BALAGANGADHARAN K, et al. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020; 111:110862. [25] DEEN GR, LOH XJ. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels. 2018;4(1):13. [26] BORDBAR-KHIABANI A, GASIK M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665. [27] PARK KY, ODDE DJ, DISTEFANO MD. Photoresponsive hydrogels for studying mechanotransduction of cells. Methods Mol Biol. 2023;2600: 133-153. [28] YUAN N, SHAO K, HUANG S, et al. Chitosan, alg inate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: a review. Int J Biol Macromol. 2023;240:124321. [29] YU H, FENG M, MAO G, et al. Implementation of photosensitive, injectable, interpenetrating, and kartogenin-modified GELMA/PEDGA biomimetic scaffolds to restore cartilage integrity in a full-thickness osteochondral defect model. ACS Biomater Sci Eng. 2022;8(10): 4474-4485. [30] LI Y, LI L, LI Y, et al. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field. Bioact Mater. 2022;22:312-324. [31] NABAVI MH, SALEHI M, EHTERAMI A, et al. A collagen-based hydrogel containing tacrolimus for bone tissue engineering. Drug Deliv Transl Res. 2020;10(1):108-121. [32] JAYACHANDRAN V, MURUGAN SS, DALAVI PA, et al. Alg inate-based composite microspheres: preparations and applications for bone tissue engineering. Curr Pharm Des. 2022;28(13):1067-1081. [33] FERREIRA SA, YOUNG G, JONES JR, et al. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Mater Sci Eng C Mater Biol Appl. 2021; 118:111393. [34] ZHANG X, ZHU Y, CAO L, et al. Alg inate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation. J Mater Chem B. 2018; 6(13):1951-1964. [35] ZHAI P, PENG X, LI B, et al. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224-1239. [36] KIM SK, CHO TH, HAN JJ, et al. Comparative study of BMP-2 alone and combined with VEGF carried by hydrogel for maxillary alveolar bone regeneration. Tissue Eng Regen Med. 2016;13(2):171-181. [37] XU X, SUI B, LIU X, et al. A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: construction and pleiotropic immunomodulatory effects. Bioact Mater. 2022;25: 701-715. [38] YANG R, XUE W, LIAO H, et al. Injectable poly lysine and dextran hydrogels with robust antibacterial and ROS-scavenging activity for wound healing. Int J Biol Macromol. 2022;223(Pt A):950-960. [39] SUN S, CUI Y, YUAN B, et al. Drug delivery systems based on polyethylene glycol hydrogels for enha nced bone regeneration. Front Bioeng Biotechnol. 2023;11:1117647. [40] 赵洁晨,任乐,魏玉,等.一种固有抗菌的黏附性可注射水凝胶用于牙周炎骨缺损治疗的初步研究[J].口腔医学,2023,43(11):989-995. [41] XU LJ, YUAN H, YE Q, et al. Repair of mandibular defects with hydrogel loaded with nano-hydroxyapatite in rats. Shanghai Kou Qiang Yi Xue. 2022;31(5):449-453. [42] KALEEM A, AMAILUK P, HATOUM H, et al. The trigeminal nerve injury. Oral Maxillofac Surg Clin North Am. 2020;32(4):675-687. [43] GORDON T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020;21(22):8652. [44] YU Z, LI H, XIA P, et al. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng. 2020; 14:22. [45] PARK CH, WOO KM. Fibrin-based biomaterial applications in tissue engineering and regenerative medicine. Adv Exp Med Biol. 2018; 1064:253-261. [46] MU X, SUN X, YANG S, et al. Chitosan tubes prefilled with aligned fibrin nanofiber hydrogel enhance facial nerve regeneration in rabbits. ACS Omega. 2021;6(40):26293-26301. [47] HU B, ZHANG H, XU M, et al. Delivery of basic fibroblast growth factor through an in situ forming smart hydrogel activates autophagy in schwann cells and improves facial nerves generation via the PAK-1 signaling pathway. Front Pharmacol. 2022;13:778680. [48] ZHANG Q, NGUYEN P, BURRELL JC, et al. Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med. 2021;6(1):59. [49] WANG Y, KESHAVARZ M, BARHOUSE P, et al. Strategies for regenerative vascular tissue engineering. Adv Biol (Weinh). 2023;7(5): e2200050. [50] SARKAR B, NGUYEN PK, GAO W, et al. Angiogenic self-assembling peptide scaffolds for functional tis sue regeneration. Biomacromolecules. 2018;19(9):3597-3611. [51] GIANNI-BARRERA R, DI MAGGIO N, MELLY L, et al. Therapeutic vascular ization in regenerative medicine. Stem Cells Transl Med. 2020;9(4): 433-444. [52] DASHNYAM K, BUITRAGO JO, BOLD T, et al. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci. 2019;7(12):5221-5231. [53] CAO L, ARANY PR, WANG YS, et al. Promoting angiogenesis via manipulation of VEGF responsiveness wi th notch signaling. Biomaterials. 2009;30(25):4085-4093. [54] LI J, WEI G, LIU G, et al. Regulating type h vessel formation and bone metabolism via bone-targeting oral micro/nano-hydrogel microspheres to prevent bone loss. Adv Sci (Weinh). 2023;10(15):e22073 81. [55] GENG X, LIU K, WANG J, et al. Preparation of ultra-small copper nanoparticles-loaded self-healing hydrogels with antibacterial, inflammation-suppressing and angiogenesis-enhancing properties for promoting diabetic wound healing. Int J Nanomedicine. 2023;18: 3339-3358. [56] HAN Y, GONG T, ZHANG C, et al. HIF-1α stabilization enhances angio-/vascu logenic properties of SHED. J Dent Res. 2020;99(7):804-812. [57] REY S, SEMENZA GL. Hypoxia-inducible factor-1-dependent mechanisms of vascular ization and vascular remodelling. Cardiovasc Res. 2010;86(2):236-242. [58] WANG Y, CAO Z, WEI Q, et al. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Bi omater. 2022;147:342-355. [59] YANG F, LI Z, CAI Z, et al. Pluronic F-127 hydrogel loaded with human adipose-derived stem cell-d erived exosomes improve fat graft survival via HIF-1α-mediated enhancement of angiogenesis. Int J Nan omedicine. 2023;18:6781-6796. [60] PARDO A, GÓMEZ-FLORIT M, BARBOSA S, et al. Magnetic nanocomposite hydrogels for tissue engineering: design concepts and remote actuation strategies to control cell fate. ACS Nano. 2021; 15(1):175-209. [61] JANG Y, KIM SM, KIM E, et al. Biomimetic cell-actuated artificial muscle with nanofibrous bundles. Microsyst Nanoeng. 2021;7:70. [62] WANG L, LI T, WANG Z, et al. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials. 2022;285:121537. [63] KINOSHITA N, SASAKI Y, MARUKAWA E, et al. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration. J Biomater Sci Polym Ed. 2020;31(10):1254-1271. [64] LI JG, CHENG X, HUANG YX, et al. Wnt7a promotes muscle regeneration in branchiomeric orbicularis or is muscle. Int J Clin Exp Pathol. 2021; 14(6):693-704. [65] WANG W, WANG A, HU G, et al. Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomater Sci Eng. 2023;9(4):1961-1975. [66] ALKHURSANI SA, GHOBASHY MM, AL-GAHTANY SA, et al. Application of nano-inspired scaffolds-based biopolymer hydrogel for bone and periodontal tissue regeneration. Polymers (Basel). 2022;14(18):3791. [67] LI M, LV J, YANG Y, et al. Advances of hydrogel therapy in periodontal regeneration-a materials perspective review. Gels. 2022;8(10):624. [68] WANG Y, YANG Z, CHEN X, et al. Silk fibroin hydrogel membranes prepared by a sequential cross-linking strategy for guided bone regeneration. J Mech Behav Biomed Mater. 2023;147:106133. [69] DUBEY N, FERREIRA JA, DAGHRERY A, et al. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater. 2020;113:164-176. [70] ZHANG L, DONG Y, LIU Y, et al. Multifunctional hydrogel/platelet-rich fibrin/nanofibers scaffolds with cell barrier and osteogenesis for guided tissue regeneration/guided bone regeneration applications. Int J Biol Macromol. 2023;253(Pt 4):126960. [71] XU W, ZHOU W, WANG H, et al. Roles of Porphyromonas g ingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol. 2020;120:45-84. [72] LIU S, WANG YN, MA B, et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facili tates in situ periodontal tissue regeneration. ACS Appl Mater Interfaces. 2021;13(31):36880-36893. [73] MOHABATPOUR F, CHEN X, PAPAGERAKIS S, et al. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci. 2022;10(12):3062-3087. [74] ZHANG Z, BI F, GUO W. Research advances on hydrogel-based materials for tissue regeneration and remineralization in tooth. Gels. 2023;9(3):245. [75] ZHANG S, ZHAO Y, DING S, et al. Facile synthesis of in situ formable Alg inate composite hydrogels with Ca2+-induced healing ability. Tissue Eng Part A. 2021;27(19-20):1225-1238. [76] LIU Z, LU J, CHEN X, et al. A novel amelogenesis-inspired hydrogel composite for the remineralization of enamel non-cavitated lesions. J Mater Chem B. 2022;10(48):10150-10161. [77] MOHABATPOUR F, YAZDANPANAH Z, PAPAGERAKIS S, et al. Self-crosslinkable oxidized alg inate-carboxymethyl chitosan hydrogels as an injectable cell carrier for in vitro dental enamel regeneration. J Funct Biomater. 2022;13(2):71. [78] FÖLDES A, SANG-NGOEN T, KÁDÁR K, et al. Three-dimensional culture of ameloblast-originated hat-7 cells for functional modeling of defective tooth enamel formation. Front Pharmacol. 2021;12:682654. [79] NAJAFI H, JAFARI M, FARAHAVAR G, et al. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf. 2021;4(4):735-756. [80] LI S, YU Q, LI H, et al. Self-assembled peptide hydrogels in regenerative medicine. Gels. 2023;9(8):653. [81] OGLE OE. Salivary gland diseases. Dent Clin North Am. 2020;64(1): 87-104. [82] ITONAGA T, TOKUUYE K, MIKAMI R, et al. Mathematical evaluation of post-radiotherapy salivary gland function using salivary gland scintigraphy. Br J Radiol. 2022;95(1130):20210718. [83] KLINOVSKAYA AS, GURGENADZE AP, BAZIKYAN EA, et al. Sialendoscopy in diagnosis and treatment of salivary gland disorders. Stomatolog iia (Mosk). 2020;99(3):83-86. [84] DOS SANTOS HT, NAM K, BROWN CT, et al. Trimers conjugated to fibrin hydrogels promote salivary gland function. J Dent Res. 2021; 100(3):268-275. [85] NAM K, DOS SANTOS HT, MASLOW F, et al. Lamin in-1 peptides conjugated to fibrin hydrogels promote salivary gland regeneration in irradiated mouse submandibular glands. Front Bioeng Biotechnol. 2021;9:729180. [86] WANG T, HUANG Q, RAO Z, et al. Injectable decellular ized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater. 2023;169:256-272. [87] YAO Y, ZHANG A, YUAN C, et al. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci. 2021;9(13):4523-4540. [88] BRUMBERG V, ASTRELINA T, MALIVANOVA T, et al. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9(9):1235. [89] YAZDI MK, ZARE M, KHODADADI A, et al. Polydopamine biomaterials for skin regeneration. ACS Biomater Sci Eng. 2022;8(6):2196-2219. [90] YUAN Y, DING L, CHEN Y, et al. Nano-silver functionalized polysaccharides as a platform for wound dressings: a review. Int J Biol Macromol. 2022;194:644-653. [91] NICHOLS F, CHEN S. Graphene oxide quantum dot-based functional nanomaterials for effective antimicrobial applications. Chem Rec. 2020;20(12):1505-1515. [92] HUANG H, HE D, LIAO X, et al. An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. Mater Sci Eng C Mater Biol Appl. 2021;129: 112395. [93] XU L, YE Q, XIE J, et al. An injectable gellan gum-based hydrogel that inhibits Staphylococcus aureus for infected bone defect repair. J Mater Chem B. 2022;10(2):282-292. [94] KUMARI A, RAINA N, WAHI A, et al. Wound-healing effects of curcumin and its nanoformulations: a comprehensive review. Pharmaceutics. 2022;14(11):2288. [95] YOON SJ, HYUN H, LEE DW, et al. Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules. 2017;22(9):1513. [96] FATHI P, SIKORSKI M, CHRISTODOULIDES K, et al. Zeolite-loaded alg inate-chitosan hydrogel beads as a topical hemostat. J Biomed Mater Res B Appl Biomater. 2018;106(5):1662-1671. [97] YU Q, SUN H, YUE Z, et al. Zwitter ionic polysaccharide-based hydrogel dressing as a stem cell carrier to accelerate burn wound healing. Adv Healthc Mater. 2023;12(7):e2202309. [98] WU D, TAO S, ZHU L, et al. Chitosan hydrogel dressing loaded with adipose mesenchymal stem cell-derived exosomes promotes skin full-thickness wound repair. ACS Appl Bio Mater. 2024;7(2):1125-1134. [99] YU R, ZHANG H, GUO B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 2021;14(1):1. [100] ZHAO X, WU H, GUO B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34-47. [101] WENG Y, CAO Y, SILVA CA, et al. Tissue-engineered composites of bone and cartilage for mandible condy lar reconstruction. J Oral Maxillofac Surg. 2001;59(2):185-190. [102] DOBIE K, SMITH G, SLOAN AJ, et al. Effects of alg inate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res. 2002;43(2-3):387-390. [103] CHEN F, WU Z, WANG Q, et al. Preparation and biological characteristics of recombinant human bone morphogenetic protein-2-loaded dextran-co-gelatin hydrogel microspheres, in vitro and in vivo studies. Pharmacology. 2005;75(3):133-144. [104] CAO Y, MEI ML, LI QL, et al. Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue. ACS Appl Mater Interfaces. 2014;6(1):410-420. [105] MIYAJIMA H, MATSUMOTO T, SAKAI T, et al. Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis. Biomaterials. 2011;32(28):6754-6763. [106] VARONI E, TSCHON M, PALAZZO B, et al. Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connect Tissue Res. 2012;53(6):548-554. [107] MATSUMINE H, SASAKI R, TABATA Y, et al. Facial nerve regeneration using basic fibroblast growth factor-impregnated gelatin microspheres in a rat model. J Tissue Eng Regen Med. 2016;10(10):E559-E567. [108] SALZLECHNER C, HAGHIGHI T, et al. Adhesive hydrogels for maxillofacial tissue regeneration using minimally invasive procedures. Adv Healthc Mater. 2020;9(4):e1901134. |
[1] | 赖鹏宇, 梁 冉, 沈 山. 组织工程技术修复颞下颌关节:问题与挑战[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 赵增波, 李晨曦, 窦晨雷, 马 娜, 周冠军. 壳聚糖/甘油磷酸钠/海藻酸钠/益母草碱水凝胶的抗炎与促成骨作用[J]. 中国组织工程研究, 2025, 29(4): 678-685. |
[3] | 董美林, 都海宇, 刘 源. 负载槲皮素的羧甲基壳聚糖水凝胶促进糖尿病大鼠创面愈合[J]. 中国组织工程研究, 2025, 29(4): 692-699. |
[4] | 张 博, 张 振, 江 东. 单宁酸改性互穿网络水凝胶促进断裂跟腱术后的组织重塑[J]. 中国组织工程研究, 2025, 29(4): 721-729. |
[5] | 刘浩洋, 谢 强, 沈梦然, 任岩松, 马金辉, 王佰亮, 岳德波, 王卫国. 可降解锌基合金在骨缺损修复重建中的应用及研究热点和不足[J]. 中国组织工程研究, 2025, 29(4): 839-845. |
[6] | 张 煜, 徐睿安, 方 蕾, 历龙飞, 刘姝妍, 丁凌雪, 王悦熹, 郭子琰, 田 丰, 薛佳佳. 梯度人工骨修复支架调控骨骼系统组织的修复与再生[J]. 中国组织工程研究, 2025, 29(4): 846-855. |
[7] | 王自林, 牟秋菊, 刘宏杰, 申玉雪, 祝丽丽. 载富血小板血浆水凝胶对L929细胞氧化损伤的保护作用[J]. 中国组织工程研究, 2025, 29(4): 771-779. |
[8] | 赵红霞, 孙政伟, 韩 阳, 吴学超, 韩 静. 富血小板纤维蛋白复合甲基丙烯酰化明胶水凝胶的促成骨性能[J]. 中国组织工程研究, 2025, 29(4): 809-817. |
[9] | 肖 放, 黄 雷, 王 琳. 磁性纳米材料与磁场效应加速骨损伤修复[J]. 中国组织工程研究, 2025, 29(4): 827-838. |
[10] | 俞 磊, 张 巍, 秦 毅, 葛高然, 柏家祥, 耿德春. 贻贝启发接枝骨形态发生蛋白2成骨活性肽的介孔生物玻璃修复股骨髁缺损[J]. 中国组织工程研究, 2025, 29(22): 4629-4638. |
[11] | 李永航, 李文铭, 严才平, 王星宽, 向 超, 张 袁, 蒋 科, 陈 路. 抗纤维化与促“H”型血管核壳结构生物支架修复临界骨缺损[J]. 中国组织工程研究, 2025, 29(16): 3420-3431. |
[12] | 王仁智, 陈远汾, 李金玮. 3D打印中空管道双交联水凝胶组织工程支架[J]. 中国组织工程研究, 2025, 29(16): 3432-3439. |
[13] | 冯淑琦, 张诗咏, 姚珂奕, 唐渝菲, 王 锴, 周雪梅, 向 琳 . 光响应纳米材料在骨组织再生中的应用[J]. 中国组织工程研究, 2025, 29(16): 3469-3475. |
[14] | 何 蕊, 李重一, 王瑞瑶, 曾 丹, 范代娣. MXene基水凝胶在创面修复领域的应用[J]. 中国组织工程研究, 2025, 29(16): 3486-3493. |
[15] | 陈明伟, 余雯莉, 夏苏杭, 陈 宾, 陈文忠, 李锋侦, 周 宇, 司文腾. 携载microRNA-140外泌体/海藻酸钠/胶原水凝胶修复关节软骨损伤[J]. 中国组织工程研究, 2025, 29(16): 3326-3334. |
1.1.7 检索策略 以PubMed数据库为例,检索策略见图2。
1.1.8 检索文献量 共检索到868篇相关文献,其中中文文献101篇,英文文献767篇。万方及中国知网数据库检索到101篇,PubMed数据库检索到767篇。
1.2 入组标准
1.2.1 纳入标准 ①有关水凝胶类材料的机械性能、生物性能及刺激响应性的文献;②有关水凝胶类材料在口腔颌面部缺损中应用的文献;③同一领域中论点、论据可靠的文献。
1.2.2 排除标准 ①重复性研究且与研究目的无相关性的文献;②资料无法提取的部分文献;③较为陈旧的文献。
1.3 文献质量评估及数据的提取 共检索到868篇相关文献,通过阅读文章后排除研究目标与该综述不相关、重复发表的文献760篇,实际纳入108篇,中文2篇,英文106篇。中国知网数据库2篇,PubMed数据库106篇,见图3。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||