[1] HAK DJ, FITZPATRICK D, BISHOP JA, et al. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury. 2014;45: S3-S7.
[2] SCHMITZ JP, HOLLINGER JO. The Critical Size Defect as an Experimental Model for Craniomandibulofacial Nonunions. Clin Orthop Relat Res. 1986:(205):299-308.
[3] DALISSON B, CHARBONNIER B, AOUDE A, et al. Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomater. 2021;136:37-55.
[4] MA L, WANG X, ZHOU Y, et al. Biomimetic Ti–6Al–4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioact Mater. 2021;6(10): 3437-3448.
[5] BIGGEMANN J, PEZOLDT M, STUMPF M, et al. Modular ceramic scaffolds for individual implants. Acta Biomater. 2018;80: 390-400.
[6] ZHANG Y, FAN Z, XING Y, et al. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol. 2022;10:981062.
[7] WU L, GU Y, LIU L, et al. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials. 2020;227:119555.
[8] PENG F, ZHANG X, WANG Y, et al. Guided bone regeneration in long-bone defect with a bilayer mineralized collagen membrane. Collagen Leather. 2023;36(5). https://doi.org/10.1186/s42825-023-00144-4
[9] SALHOTRA A, SHAH HN, LEVI B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11): 696-711.
[10] PANTELI M, VUN JSH, POUNTOS I, et al. Biological and molecular profile of fracture non-union tissue: A systematic review and an update on current insights. J Cell Mol Med. 2022;26(3):601-623.
[11] WANG L, TOWER RJ, CHANDRA A, et al. Periosteal Mesenchymal Progenitor Dysfunction and Extraskeletally-Derived Fibrosis Contribute to Atrophic Fracture Nonunion. J Bone Miner Res. 2019;34(3):520-532.
[12] YU HS, PARK J, LEE HS, et al. Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea. World J Mens Health. 2018;36(1):66-72.
[13] ZHOU X, HE X, SHI K, et al. Injectable Thermosensitive Hydrogel Containing Erlotinib-Loaded Hollow Mesoporous Silica Nanoparticles as a Localized Drug Delivery System for NSCLC Therapy. Adv Sci (Weinh). 2020;7(23):2001442.
[14] NIRWAN VP, KOWALCZYK T, BAR J, et al. Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. Nanomaterials (Basel). 2022;12(11):1829.
[15] WANG W, ZHAO J, YAO Z, et al. Oriented inner fabrication of bi-layer biomimetic tendon sheath for anti-adhesion and tendon healing. Ther Adv Chronic Dis. 2020;11:2040622320944779.
[16] ZHANG X, REAGAN MR, KAPLAN DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. 2009;61(12): 988-1006.
[17] LOKTEV A, LINDNER T, BURGER EM, et al. Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J Nucl Med. 2019;60(10):1421-1429.
[18] GIESEL FL, KRATOCHWIL C, LINDNER T, et al. (68)Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med. 2019;60(3):386-392.
[19] CHEN Q, LI J, HAN F, et al. A Multifunctional Composite Hydrogel That Rescues the ROS Microenvironment and Guides the Immune Response for Repair of Osteoporotic Bone Defects. Adv Funct Mater. 2022;32(27):2201067.1-2201067.18.
[20] WEI Z, XIONG C, LIU Z, et al. Release characteristics and processing-structure-performance relationship of electro-spinning curcumin-loaded polyethersulfone based porous ultrafine fibers. J Biomater Sci Polym Ed. 2018;29(15):1825-1838.
[21] PATTNAIK S, SWAIN K, RAMAKRISHNA S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(2):e1859.
[22] PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426-36.
[23] XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 2018;24(6):823-833.
[24] RUAN Z, YIN H, WAN TF, et al. Metformin accelerates bone fracture healing by promoting type H vessel formation through inhibition of YAP1/TAZ expression. Bone Res. 2023;11(1):45.
[25] YANG M, LI CJ, XIAO Y, et al. Ophiopogonin D promotes bone regeneration by stimulating CD31(hi) EMCN(hi) vessel formation. Cell Prolif. 2020;53(3):e12784.
[26] LU W, ZENG M, LIU W, et al. Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration. Mater Today Bio. 2023;19:100569.
[27] GHERASIM O, GRUMEZESCU AM, GRUMEZESCU V, et al. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics (Basel). 2021;10(2):160.
[28] ZENG Y, HUANG C, DUAN D, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater. 2022;153:108-123.
[29] BAYANZAY K, ALZOEBIE L. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives. J Blood Med. 2016;7:159-169.
[30] HADJIZADEH A, GHASEMKHAH F, GHASEMZAIE N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. Polym Rev. 2017;57(3): 505-556.
[31] CHEN S, YU Y, XIE S, et al. Local H2 release remodels senescence microenvironment for improved repair of injured bone. Nat Commun. 2023;14(1):7783.
[32] YUE K, TRUJILLO-DE SANTIAGO G, ALVAREZ MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271.
[33] CHEN YC, LIN RZ, QI H, et al. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv Funct Mater. 2012;22(10):2027-2039.
[34] KLOTZ BJ, GAWLITTA D, ROSENBERG AJWP, et al. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol. 2016;34(5):394-407.
[35] REICHERT JC, WULLSCHLEGER ME, CIPITRIA A, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2010;35(8): 1229-1236.
[36] CAI C, WANG W, LIANG J, et al. MMP-2 Responsive Unidirectional Hydrogel‐Electrospun Patch Loading TGF‐β1 siRNA Polyplexes for Peritendinous Anti‐Adhesion. Adv Funct Mater. 2020;31(6). doi: org/10.1002/adfm.202008364.
[37] JOHNSON KA. Healing large bone defects. Vet Comp Orthop Traumatol. 2014;27(6): V.doi: 10.3415/VCOT-14-10-0162.
[38] AGARWAL R, GARCÍA AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53-62.
[39] HO-SHUI-LING A, BOLANDER J, RUSTOM LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162.
[40] CAO J, JIN L, YAN ZQ, et al. Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models. Nat Commun. 2023;14(1):8461. |