中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (30): 4817-4824.doi: 10.12307/2024.644

• 人工假体 artificial prosthesis • 上一篇    下一篇

多孔结构设计人工踝关节衬垫生物力学的优化方案

徐  志1,刘子铭2,李豫皖2,3,陈雨飞4,金  瑛5,饶敬澄6,田守进7   

  1. 1张家港市第五人民医院骨科,江苏省张家港市   215600;2北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京市   100191;3 浙江大学医学院附属第一医院骨科,浙江省杭州市   310009;4 苏州市康力骨科器械有限公司,江苏省张家港市   215600;5遵义医科大学附属医院骨科,贵州省遵义市    563000;6 徐州医科大学附属宿迁医院骨科,江苏省宿迁市   223800;7苏州大学附属张家港医院骨科,江苏省张家港市    215600
  • 收稿日期:2023-08-01 接受日期:2023-09-15 出版日期:2024-10-28 发布日期:2023-12-25
  • 通讯作者: 田守进,主任医师,苏州大学附属张家港医院骨科,江苏省张家港市 215600
  • 作者简介:徐志,男,1993年生,安徽省泾县人,汉族,2019年遵义医科大学毕业,硕士,主治医师,主要从事四肢关节与运动医学的研究。
  • 基金资助:
    国家自然科学基金青年科学基金项目(82302853),项目负责人:李豫皖;北京大学医学部青年科技创新人才培养基金(BMU2022PY007),项目负责人:李豫皖

Biomechanical optimization scheme of artificial ankle inserts based on porous structure design

Xu Zhi1, Liu Ziming2, Li Yuwan2, 3, Chen Yufei4, Jin Ying5, Rao Jingcheng6, Tian Shoujin7   

  1. 1Department of Orthopedics, Zhangjiagang Fifth People’s Hospital, Zhangjiagang 215600, Jiangsu Province, China; 2Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; 3Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China; 4Suzhou Kangli Orthopaedic Equipment Co., Ltd., Zhangjiagang 215600, Jiangsu Province, China; 5Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China; 6Department of Orthopedics, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian 223800, Jiangsu Province, China; 7Department of Orthopedics, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang 215600, Jiangsu Province, China
  • Received:2023-08-01 Accepted:2023-09-15 Online:2024-10-28 Published:2023-12-25
  • Contact: Tian Shoujin, Chief physician, Department of Orthopedics, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang 215600, Jiangsu Province, China
  • About author:Xu Zhi, Master, Attending physician, Department of Orthopedics, Zhangjiagang Fifth People’s Hospital, Zhangjiagang 215600, Jiangsu Province, China
  • Supported by:
    Youth Science Foundation Project of National Natural Science Foundation of China, No. 82302853 (to LYW); Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation, No. BMU2022PY007 (to LYW)

摘要:


文题释义:

人工踝关节衬垫:多为人工踝关节系统在关节面与金属部件相接触的塑料材质部件。它的主要作用是减轻关节运动时的摩擦和压力,同时维持稳定的关节运动。
三重周期极小曲面:是平滑的无限曲折曲面,平均曲率为零,将三维空间划分为2个共连续相,具有高连通性和几何参数易控的特点。近年来以Gyroid、Diamond为代表的三重周期极小曲面晶格可以通过定制孔结构的几何参数来调整其结构刚度,被认为是有前途的内植物候选材料。


背景:假体松动和磨损是导致全踝关节置换失败的主要原因,其与骨-植入物界面的微运动、关节面的接触应力和关节运动密切相关。包括衬垫和胫/距柄假体在内的人工关节部件的设计构造是影响踝关节受力、运动、接触界面微运动的关键因素,开发新型衬垫对提高人工踝关节生存率具有重要意义。

目的:构建全踝关节置换有限元模型用以检测多孔结构优化型衬垫的生物力学特性,分析多孔结构优化型衬垫在减少假体微动和改善关节面接触行为方面的作用。
方法:以一名健康成年人右踝关节CT扫描数据和INBONE Ⅱ系统产品手册为基础,建立包括骨骼和人工关节系统的三维模型,在经过截骨和假体安装后获得全踝关节置换模型(模型A),再通过对原始衬垫进行多孔结构改造获得G50型、G60型、D50型、D60型4种新型衬垫,将不同衬垫替换原始衬垫以建立与之相对应的优化型全踝关节置换模型(模型B-E),在5个模型上施加步态载荷模拟步态工况。比较5种模型植入物-骨界面微动和关节面接触行为的差异。

结果与结论:①在步态周期下4个优化型全踝关节置换模型的假体微动小于原始模型,与模型A相比,模型B-E假体微动数值上分别下降5.4%,10.1%,8.1%及20.9%,再者优化型模型在胫骨骨槽穹顶部的高微动区域较原始模型明显缩小;②4个优化型模型获得了更大的关节面接触面积,与模型A相比,模型B-E衬垫接触面积均值分别增加了11.8%,14.7%,8.1%及32.6%;③与接触面积增大的效果类似,相较于原始模型,优化型模型的关节面接触应力不同程度下降,其中模型E的数值下降最为显著(P < 0.05),归功于构成D60型衬垫Diamond晶格良好的力学属性和较大的孔隙率;④结果表明全踝关节置换使用多孔结构改良衬垫可以提高衬垫的弹性,增加其吸收关节冲击力的能力,为降低植入物-骨界面微动和改善关节接触行为创造有利条件。

https://orcid.org/0000-0003-3298-8765 (徐志)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 全踝关节置换, 人工踝关节, 衬垫, 多孔结构, 有限元分析

Abstract: BACKGROUND: Prosthesis loosening and wear are still the main problems in the failure of total ankle replacement, which are closely related to the micro-motion of the implant-bone interface, the contact stress of the articular surface and joint motion. The design of artificial joint components, including insert and tibial/talar stem prosthesis, is a key factor affecting the force, motion, and micromotion of the contact interface of the ankle joint. The development of new inserts is of great significance to improve the survival rate of artificial ankle joints.
OBJECTIVE: The finite element model of the total ankle replacement model was constructed to detect the biomechanical properties of the porous structure-optimized inserts, and the effect of the porous structure-optimized inserts on reducing prosthesis micromotion and improving the contact behavior of the articular surface was analyzed.
METHODS: Based on the CT scan data of the right ankle joint of a healthy adult and the INBONE II system product manual, a three-dimensional model including bone and artificial joint system was established, and the total ankle replacement model (model A) was obtained after osteotomy and prosthesis installation, and then through four new types of inserts, G50, G60, D50, and D60, were obtained by transforming the porous structure of the original insert, and the original one was replaced with different inserts to establish an optimized total ankle replacement model (models B-E) corresponding to the inserts. The gait loads were applied on the five models to simulate the gait conditions. The differences in micromotion and articular surface contact behaviors at the implant-bone interface of all five models were compared. 
RESULTS AND CONCLUSION: (1) In the gait cycle, the micromotion of the prosthesis of the four optimized total ankle replacement models was lower than that of the original model. Compared with model A, the micromotion of the prosthesis in models B-E decreased by 5.4%, 10.1%, 8.1%, and 20.9%, respectively. The high micromotion area of the tibial groove dome in the optimized model was significantly smaller than that of the original model. (2) The four optimized models obtained a larger articular surface contact area. Compared with model A, the average contact area of the inserts in models B-E increased by 11.8%, 14.7%, 8.1%, and 32.6%, respectively. (3) Similar to the effect of increasing the contact area, compared with the original model, the contact stress of the optimized model decreased in varying degrees, and the value of model E decreased the most significantly (P < 0.05), it is due to good mechanical properties and large porosity of the Diamond lattice that constitutes the D60-type insert. (4) The research results show that the use of porous structure to improve the inserts can improve the elasticity of the inserts and increase its ability to absorb joint impact, for favorable conditions are created for reducing micromotion at the implant-bone interface and improving joint contact behavior.

Key words: total ankle replacement, artificial ankle, insert, porous structure, finite element analysis

中图分类号: