中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (3): 383-389.doi: 10.3969/j.issn.2095-4344.1906

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

基于AnyBody仿真和肌电测试分析不同体质量指数男性青年球类运动中的生物力学特征

庞  博,纪仲秋,姜桂萍,张子华,李嘉慧   

  1. 北京师范大学体育与运动学院,北京市  100875
  • 收稿日期:2019-04-01 修回日期:2019-04-13 接受日期:2019-05-16 出版日期:2020-01-28 发布日期:2019-12-25
  • 通讯作者: 纪仲秋,博士,教授,北京师范大学体育与运动学院,北京师范大学运动生物力学实验室,北京市 100875
  • 作者简介:庞博,女,1992年生,黑龙江省伊春市人,汉族,北京师范大学体育与运动学院博士生,主要从事运动生物力学与人因工程学研究。
  • 基金资助:
    国家社会科学基金(BLA150063)

Biomechanical characteristics on ball games for male youth with different body mass index based on AnyBody simulation and electromyogram test

Pang Bo, Ji Zhongqiu, Jiang Guiping, Zhang Zihua, Li Jiahui   

  1. School of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
  • Received:2019-04-01 Revised:2019-04-13 Accepted:2019-05-16 Online:2020-01-28 Published:2019-12-25
  • Contact: Ji Zhongqiu, MD, Professor, School of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
  • About author:Pang Bo, Doctoral candidate, School of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
  • Supported by:
    the National Social Science Foundation of China, No. BLA150063

摘要:

文题释义:
Anybody仿真:使用数学建模技术模拟人体肌肉骨骼在不同载荷中的情况,计算各块肌肉和关节的受力、变形、肌腱的弹性能、拮抗肌肉运动和其他对于工作中的人体有用的特性,以计量方式计算出人体对于环境的反应,兼与人机工程学和生物力学分析,为人体运动建模、人机工程学产品性能改进和生物医学工程研究提供平台。
均方根振幅:是将振幅平方的平均值开平方,把振幅值平均然后开方,最原始的是针对正弦波推导出来的,但实际上对所有的波形都适用,均方根值(RMS)也称作为效值,表示在一段周期内,参加肌肉活动的肌肉瞬间肌电图振幅均方根值,是一定时间内肌电位值平方和的平方根。


背景:Anybody肌肉骨骼建模系统,使用数学建模技术模拟人体骨骼、肌肉和环境的关系,可对人体的逆向动力学进行研究,得出下肢三关节最大肌肉力等指标。

目的:研究24名不同体质量指数男大学生在坐瑞士球一个动作周期的下肢肌肉力值,及受试者在坐瑞士球与平凳的均方根肌电平均值对比情况。

方法:将24名男大学生按体质量指数分为正常组、超重组、肥胖组,用BTS三维红外动作捕捉系统、Kistler 三维测力台、BTS表面肌电测试系统,同步记录动力学和肌电参数,以单因素方差分析定性比较不同组间肌力和肌电参数差异,用定量差异分析法对比均值差异。

结果与结论:①肌肉力量方面,由坐到站过程中,正常组与肥胖组相比,股直肌、半膜肌、股二头肌长头、腘肌、比目鱼肌、胫骨前肌差异显著(P < 0.05,0.47QD<0.80),股方肌与耻骨肌的两组肌肉力差异极其显著(P < 0.01,QD0.80);超重组与肥胖组肌肉力相比,股方肌具有显著性差异(P < 0.05,0.47QD<0.80),由站到坐过程中,正常组与肥胖组相比,缝匠肌、拇长伸肌、腓肠肌肌肉力差异显著(P < 0.05,0.47QD<0.80);②均方根肌电值方面,坐平凳状态下,由坐到站过程中,正常组与肥胖组相比,股二头肌和腓肠肌差异显著(P < 0.05,0.47QD<0.80),由站到坐过程中,正常组与肥胖组相比,股直肌差异显著(P < 0.05,0.47QD<0.80);坐瑞士球状态下,由坐到站过程中,正常组与肥胖组相比,胫骨前肌、股二头肌差异显著(P < 0.05,0.47QD<0.80);由站到坐过程中,正常组与肥胖组相比,腓肠肌、右竖脊肌肌电值差异显著(P < 0.05,0.47QD<0.80)。提示:①各组由坐到站过程中主导发力肌肉是臀中肌、股外侧肌、股二头肌长头、股直肌、腓肠肌、胫骨前肌、比目鱼肌,由站到坐过程中下肢臀中肌、股外侧肌和股二头肌长头、腓肠肌、胫骨前肌、比目鱼肌主导发力;②与坐平凳相比,受试者在坐瑞士球时胫骨前肌、股直肌、股二头肌、腓肠肌均方根肌电值高。

ORCID: 0000-0003-0520-5606(庞博)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

关键词: 仿真, 均方根肌电, 瑞士球, 定量差异, 大学生, 男, 肌肉, 体重指数

Abstract:

BACKGROUND: Anybody’s musculoskeletal modeling system simulates the relationship between human skeleton, muscle and environment by using mathematical modeling technology. It can study the reverse dynamics of human body and obtain the maximum muscle strength of three lower limb joints.

OBJECTIVE: To study the lower extremity muscle strength values of 24 male college students with different body mass indexes in one cycle of sitting Swiss ball, and to compare the mean root-mean-square of the subjects in sitting Swiss ball and bench. 

METHODS: Twenty-four male college students were divided into normal group, overweight group and obesity group according to body mass index. BTS 3D infrared motion capture system, Kistler 3D dynamometer and BTS surface electromyography system were used to record the dynamic and electromyographic parameters simultaneously. The differences in muscle force and electromyographic parameters between different groups were qualitatively compared by one-way analysis of variance, and the mean differences were compared by quantitative difference analysis.

RESULTS AND CONCLUSION:(1) In terms of muscle strength, from sitting to standing, compared with the obese group, the normal group showed significant differences in rectus femoris, semimememial muscle, biceps femoris longhead, popliteal muscle, soleus muscle and tibial anterior muscle (P < 0.05, 0.47 ≤ QD < 0.80), and the quadratus femoris muscle and pectineus muscle showed significant differences (< 0.01, QD ≥ 0.80). There was a significant difference in muscle strength of quadratus femoris between the obese group and the overweight group (P < 0.05, 0.47 ≤ QD < 0.80). From standing to sitting, there were significant differences in muscle strength of sartorus, extensor pollicis, and gastrocneum between the normal group and the obese group (P< 0.05, 0.47 ≤ QD < 0.80). (2) In terms of root-mean-square electromyogram value, from sitting to standing, the biceps femoris and gastrocnastus muscles in the normal group were significantly different from those in the obese group (P < 0.05, 0.47 ≤  QD < 0.80); from standing to sitting, rectus femoris muscles in the normal group were significantly different from those in the obese group (P < 0.05,  0.47 ≤ QD < 0.80). In the Swiss ball sitting state, from sitting to standing, the tibial anterior muscle and biceps femoris were significantly different between the normal group and the obese group (P < 0.05, 0.47 ≤ QD < 0.80). From standing to sitting, the electromyogram values of gastrocnemius muscle and right erector spine muscle were significantly different between the normal group and the obese group (P < 0.05, 0.47 ≤ QD < 0.80). These findings indicated that (1) In each group of BMI, the dominant muscle generation from sitting to sitting was gluteus medius muscle, vastus lateralis muscle, biceps longus muscle, rectus femoris muscle, gastrocnemius muscle, tibia anterior muscle and soleus muscle; and from standing to sitting, gluteus medius muscle, vastus lateralis muscle, biceps longus muscle, gastrocnemius muscle, tibia anterior muscle and soleus muscle. (2) Compared with the sitting stool, the subjects had higher root-mean-square of tibial anterior muscle, rectus femoris muscle, biceps femoris muscle and gastrocnemius muscle when sitting Swiss ball.

Key words: simulation, root-mean-square electromyogram, Swiss ball, quantitative difference, college students, male, muscle, body mass index

中图分类号: