中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (31): 4975-4981.doi: 10.3969/j.issn.2095-4344.0336

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

有限元分析不同屈曲状态下胫-股关节的生物力学变化

王俊然1,杜玮瑾1,王长江2,郭 媛1,陈维毅1   

  1. 1太原理工大学应用力学与生物医学工程研究所,山西省太原市  0300242萨塞克斯大学工程设计学院,英国布莱顿 BNI 9RH
  • 出版日期:2018-11-08 发布日期:2018-11-08
  • 通讯作者: 陈维毅,博士,教授。太原理工大学应用力学与生物医学工程研究所,山西省太原市 030024
  • 作者简介:王俊然,男,1994年生,内蒙古自治区赤峰市人,汉族,2018年太原理工大学毕业,硕士。
  • 基金资助:

    国家自然科学基金(11472185,11772214)

     

Biomechanical characteristics of tibio-femoral joint under different flexion angles by finite element analysis  

Wang Jun-ran1, Du Wei-jin1, Wang Chang-jiang2, Guo Yuan1, Chen Wei-yi1   

  1. 1Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China; 2Department of Engineering and Design, University of Sussex, Brighton, UK, BNI 9RH
  • Online:2018-11-08 Published:2018-11-08
  • Contact: Chen Wei-yi, PhD, Professor, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • About author:Wang Jun-ran, Master, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 11472185 and 11772214

摘要:

文章快速阅读:




文题释义:
膝关节:人体膝关节由股骨内、外侧髁和胫骨内、外侧髁以及髌骨构成,为人体最大且构造最复杂,损伤机会亦较多的关节,属于滑车关节。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
 
摘要
背景:三维有限元模型有助于人们对膝关节损伤机制和力学特性的分析,但动态模拟膝关节运动的研究较少。
目的:建立正常的男性膝关节三维有限元模型,动态模拟膝关节运动并析膝关节在不同屈曲状态下受力后,胫-股关节的力学特性和相对运动,为膝关节生物力学的研究提供有三维限元模型,并为膝关节的个性化假体设计和3D打印提供指导。
方法:对1名健康男性的膝关节进行CT扫描,然后通过Mimics,Hypermesh和Abaqus等软件,构建正常的膝关节三维有限元模型。并对其施加不同载荷进行仿真及应力分析。
结果与结论:①实验构建的膝关节有限元模型,能够准确地体现膝关节的几何结构和生物力学特性,可模拟膝关节的多种运动,并有效进行膝关节生物力学的研究;②模拟膝关节屈曲0°-60°过程中,外翻的角度范围为3.34°-6.13°;内旋角度范围为1.56°-29.17°;股骨相对胫骨有明显的后移,其范围是4.36-7.23 mm;③股骨软骨、胫骨软骨和半月板在0°的最大接触应力分别为1.45,1.03和2.59 MPa;而60°的最大接触应力分别为6.41,6.73和8.65 MPa;④上述数据说明,在模拟膝关节屈曲0°-60°过程中,膝关节外翻的角度范围较小,相对稳定;而膝关节内旋角度范围相对较大。股骨软骨和胫骨软骨的接触应力随着屈曲角度的增大而逐渐增大;内、外侧半月板的接触应力变化不同,内侧半月板的接触应力变化较大,相反外侧半月板的接触应力相对平稳,变化较小,且内侧半月板的接触应力大于外侧半月板的接触应力。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0003-3414-3125(王俊然)

关键词: 膝关节, 胫股关节, 屈曲, 生物力学, 有限元分析, 胫骨, 股骨, 半月板, 软骨, 接触应力, 组织工程, 骨关节生物力学

Abstract:

BACKGROUND: Despite three-dimensional (3D) finite element model is helpful for the analysis of the injury mechanism and mechanical characteristics of knee joint, there are few researches on dynamic movement simulation of knee joint.

OBJECTIVE: A 3D finite element model of normal male knee joint was established to dynamically simulate the movement of knee joint and analyze the biomechanical characteristics and relative movement of the tibio-femoral joint under different flexion angles, so as to provide a 3D finite element model for the investigation of knee biomechanics, and provide basis for the design of personalized knee prosthesis and 3D printing.
METHODS: The knee joint from a healthy male adult was scanned by CT. Then, a normal 3D finite element model of knee joint was constructed by Mimics, Hypermesh and Abaqus. Simulation and stress analysis of knee joint were carried out under different loads.
RESULTS AND CONCLUSION: (1) The constructed finite element model of knee joint could accurately reflect the geometrical structure and biomechanical characteristics of the knee joint, and could simulate multiple movements of knee joint and was effective for biomechanical research of the knee joint. (2) In the process of simulating knee flexion at 0°-60°, the range of knee valgus angle was 3.34°-6.13°, and the range of internal rotation angle was 1.56°-29.17°. The femur had a significant posterior shift relative to tibia, and the shifted distance was from 4.36 mm to 7.23 mm. (3) At knee flexion 0°, the maximum contact stresses of femur cartilage, tibial cartilage and meniscus were 1.45, 1.03 and 2.59 MPa, respectively, and 6.41, 6.73 and 8.65 MPa, respectively at knee flexion 60°. (4) Our findings indicate that in the process of simulating knee flexion at 0°-60°, the range of knee valgus angle is relatively small, and stable, while the range of internal rotation angle is relatively large. In the process of simulating knee flexion at 0°-60°, the contact stress of femoral and tibial cartilage gradually increased with the varied flexion angle, while the changes of contact stress of medial and lateral menisci are different, the changes of medial meniscus are much great, and the contact stress of lateral meniscus is relatively stable. The contact stress of medial meniscus is greater than that of lateral menisci.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Knee Joint, Menisci, Tibial, Cartilage, Biomechanics, Finite Element Analysis

中图分类号: