中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (32): 7004-7014.doi: 10.12307/2025.916

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

血清血脂7项与骨关节炎的关系:IEU OPEN GWAS数据库欧洲人群的大样本分析

吴振桦1,张锡玮2,王一品2,李倩倩1   

  1. 1辽宁中医药大学,辽宁省沈阳市  110847;2辽宁中医药大学附属医院,辽宁省沈阳市  116600
  • 收稿日期:2024-10-08 接受日期:2024-11-30 出版日期:2025-11-18 发布日期:2025-04-29
  • 通讯作者: 张锡玮,教授,辽宁中医药大学附属医院,辽宁省沈阳市 116600 ​
  • 作者简介:吴振桦,男,1997年生,四川省乐山市人,辽宁中医药大学在读硕士,主要从事骨与关节的损伤治疗与康复的研究。
  • 基金资助:
    辽宁省省直医院改革重点临床科室诊疗能力建设项目(LNCCC-D53-2015),项目负责人:张锡玮;沈阳市科技计划项目(22-321-34-10),项目负责人:王一品

Relationship between seven serum lipid traits and osteoarthritis: a large sample analysis of European population in IEU OPEN GWAS database

Wu Zhenhua1, Zhang Xiwei2, Wang Yipin2, Li Qianqian1    

  1. 1Liaoning University of Traditional Chinese Medicine, Shenyang 110847, Liaoning Province, China; 2Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, Liaoning Province, China
  • Received:2024-10-08 Accepted:2024-11-30 Online:2025-11-18 Published:2025-04-29
  • Contact: Zhang Xiwei, Professor, Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, Liaoning Province, China
  • About author:Wu Zhenhua, Master candidate, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, Liaoning Province, China
  • Supported by:
    Key Reform Clinical Department Diagnosis and Treatment Capacity Building Project of Liaoning Province Provincial Hospitals, No. LNCCC-D53-2015 (to ZXW); Shenyang Science and Technology Planning Project, No. 22-321-34-10 (to WYP)

摘要:


文题释义:
孟德尔随机化:是一种基于遗传变异的因果推断方法,用于评估暴露因素与疾病或其他结局之间的因果关系。孟德尔随机化的核心原理是利用遗传变异在自然界中的随机分配特性,减少混杂因素和反向因果的影响。孟德尔随机化分析以单核苷酸多态性作为工具变量,这些单核苷酸多态性与暴露因素具有已知的因果关联,同时不直接关联于其他混杂变量或结局。
共定位分析:用于评估两种或多种表型是否共享相同的遗传变异调控信号。共定位分析的目的是区分不同表型的关联信号是由独立的遗传变异引起,还是源于同一遗传变异的作用,其通过量化基因座中变异的贝叶斯后验概率或联合分布,评估基因表达数量性状基因座、表观遗传调控位点与疾病关联信号之间的重叠情况。

背景:骨关节炎是与代谢异常密切相关的复杂性疾病,然而以往研究仅涉及有限的血脂指标,未进行更全面的血脂谱分析。深入探讨血脂7项与骨关节炎之间的因果关系,不仅有助于理解骨关节炎的发病机制,还能为其预防和治疗提供新的研究方向和临床依据。
目的:探讨血脂与骨关节炎的因果关系。
方法:使用来自IEU OPEN GWAS数据库的血脂7项和骨关节炎的全基因组关联分析统计数据进行汇总,工具变量采用显著单核苷酸多态性,通过双样本孟德尔随机化分析得出血脂7项(血清总胆固醇、三酰甘油、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、载脂蛋白B、载脂蛋白AI和载脂蛋白A1)与骨关节炎(骨关节炎、膝或髋骨关节炎、膝骨关节炎和髋骨关节炎)的因果关系,以逆方差加权为主要效应,
MR-Egger回归法和加权中位数法为补充效应。Bonferroni校正和反向孟德尔随机化分析保证有效性。采用多变量孟德尔随机化分析进一步破除混杂因素,得出血脂7项与骨关节炎的显著因果关系,保证分析的稳健性。采用共定位分析再次确保因果关系的稳健性,并得出显著影响作用的基因位点,使因果关系证据更充分。
结果与结论:①双样本孟德尔随机化分析中逆方差加权结果显示,总胆固醇(OR=0.937 2,95%CI=0.885 6-0.991 9,P=0.025)、低密度脂蛋白胆固醇(OR=0.959 4,95%CI=0.923 6-0.996 6,P=0.033)、高密度脂蛋白胆固醇(OR=0.911 2,95%CI=0.833 5-0.996 2,P=0.04)、载脂蛋白B(OR=0.926,95%CI=0.887 7-0.967 4,P=0.000 5)和载脂蛋白AI(OR=0.951 2,95%CI=0.911 0-0.993 1,P=0.023)与骨关节炎呈负相关,总胆固醇(OR=0.892 3,95%CI=0.8431-0.944 3,P=0.000 08)、三酰甘油(OR=0.938 5,95%CI=0.884 7-0.995 6,P=0.035)和载脂蛋白B(OR=0.911 6,95%CI=0.865 9-0.959 7,P=0.000 4)与膝或髋骨关节炎呈负相关,总胆固醇(OR=0.898 3,95%CI=0.841 2-0.959 3,P=0.001)、高密度脂蛋白胆固醇(OR=0.881 2,95%CI=0.794 7-0.977 0,P=0.016)和载脂蛋白B(OR=0.919 0,95%CI=0.869 8-0.971 0,P=0.002)与膝骨关节炎呈负相关,总胆固醇(OR=0.864 5,95%CI=0.797 5-0.937 3,P=0.000 4)、低密度脂蛋白胆固醇(OR=0.925 6,95%CI=0.879 5-0.974 1,P=0.003)和载脂蛋白B(OR=0.888 8,95%CI=0.817 6-0.966 3,P=0.005)与髋骨关节炎呈负相关;在反向孟德尔随机化分析中结果无统计学差异。②多变量孟德尔随机化分析中逆方差加权结果显示,高密度脂蛋白胆固醇(OR=0.942 7,95%CI=0.896 1-0.991 8,P=0.022)与骨关节炎呈负相关,总胆固醇(OR=0.799,95%CI=0.647 8-0.987,P=0.037)和高密度脂蛋白胆固醇(OR=0.865 1,95%CI=0.778 1-0.961 9,P=0.007)与膝骨关节炎呈负相关。③共定位分析结果显示,总胆固醇和低密度脂蛋白与骨关节炎的H4后验概率=99.9%,共同指向一个显著单核苷酸多态性,为rs13107325。④这些结果采用国际数据库、非亚洲人群,可为中国生物医学及中国人群骨关节炎的临床早期诊断、发病机制理解和预防与治疗提供有价值的借鉴意义和指导作用。
https://orcid.org/0009-0004-1778-7476(吴振桦)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 骨关节炎, 血清代谢物, 血脂, 孟德尔随机化, 共定位分析, 因果关系, 工程化组织构建

Abstract: BACKGROUND: Osteoarthritis is a complex disease closely related to metabolic abnormalities. However, previous studies only involved limited blood lipid indicators and did not conduct more comprehensive blood lipid profile analysis. An in-depth exploration of the causal relationship between the seven items of blood lipids and osteoarthritis will not only help understand the pathogenesis of osteoarthritis, but also provide new research directions and clinical basis for its prevention and treatment.
OBJECTIVE: To explore the causal relationship between blood lipids and osteoarthritis.
METHODS: The genome-wide association analysis statistical data of 7 items of blood lipids and osteoarthritis from the IEU OPEN GWAS database were used to summarize, and significant single nucleotide polymorphisms were used as instrumental variables. The causal relationship between seven items (serum total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, apolipoprotein B, apolipoprotein AI and apolipoprotein A1) of blood lipids and osteoarthritis (osteoarthritis, knee or hip osteoarthritis, knee osteoarthritis and hip osteoarthritis) was determined through two-sample Mendelian randomization analysis. The inverse variance weighting was the main effect, and the MR-Egger regression method and the weighted median method were the supplementary effects. Bonferroni correction and reverse Mendelian randomization analysis could ensure validity. Multivariable Mendelian randomization analysis was used to further eliminate confounding factors. A significant causal relationship between seven items of blood lipids and osteoarthritis was obtained to ensure the robustness of the analysis. Co-localization analysis was used to once again ensure the robustness of the causal relationship and identify significantly influencing gene loci, making the evidence of causality more complete.
RESULTS AND CONCLUSION: (1) In the two sample Mendelian randomization analysis, the results from inverse variance weighting indicated negative correlations between osteoarthritis and the following serum lipids: total cholesterol (OR=0.937 2, 95%CI=0.885 6-0.991 9, P=0.025), low-density lipoprotein cholesterol (OR=0.959 4, 95%CI=0.923 6-0.996 6, P=0.033), high-density lipoprotein cholesterol (OR=0.911 2, 95%CI=0.833 5-0.996 2, P=0.04), apolipoprotein B (OR=0.926 7, 95%CI=0.887 7-0.967 4, P=0.000 5), and apolipoprotein AI (OR=0.951 2, 95%CI=0.911 0-0.993 1, P=0.023). Additionally, total cholesterol (OR=0.892 3, 95%CI=0.843 1-0.944 3, P=0.000 08), triglycerides (OR=0.938 5, 95%CI=0.884 7-0.995 6, P=0.035), and apolipoprotein B (OR=0.911 6, 95%CI= 0.865 9-0.959 7, P=0.000 4) were negatively associated with knee or hip osteoarthritis. For knee osteoarthritis specifically, total cholesterol (OR=0.898 3, 95%CI=0.841 2-0.959 3, P=0.001), high-density lipoprotein cholesterol (OR=0.881 2, 95%CI=0.794 7-0.977 0, P=0.016), and apolipoprotein B (OR=0.919 0, 95%CI=0.869 8-0.971 0, P=0.002) also showed negative correlations. Lastly, with respect to hip osteoarthritis, total cholesterol (OR=0.864 5, 95%CI=0.797 5- 0.937 3, P=0.000 4), low-density lipoprotein cholesterol (OR=0.925 6, 95%CI=0.879 5-0.974 1, P=0.003), and apolipoprotein B (OR=0.888 8, 95%CI=0.817 6- 0.966 3, P=0.005) exhibited negative correlations. No statistically significant differences were found in the reverse Mendelian randomization analysis. (2) In the multivariable Mendelian randomization analysis, the results from inverse variance weighting indicated a negative correlation between high-density lipoprotein cholesterol and osteoarthritis (OR=0.942 7, 95%CI=0.896 1-0.991 8, P=0.022). Additionally, total cholesterol (OR=0.799 8, 95%CI=0.647 8-0.987 6, 
P=0.037) and high-density lipoprotein cholesterol (OR=0.865 1, 95%CI=0.7781-0.961 9, P=0.007) were also negatively associated with knee osteoarthritis. (3) Colocalization analysis revealed that total cholesterol and low-density lipoprotein were significantly associated with osteoarthritis at single nucleotide polymorphisms rs13107325 (H4 posterior probability=99.9%). (4) These findings, using international databases and non-Asian populations, provide valuable insights for early clinical diagnosis, understanding the pathogenesis, and researching prevention and treatment of osteoarthritis in Chinese biomedicine and the Chinese population.

Key words: osteoarthritis, serum metabolites, lipids, Mendelian randomization, colocalization analysis, causal relationship, engineered tissue construction

中图分类号: