中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (31): 6800-6810.doi: 10.12307/2025.684
• 干细胞综述 stem cell review • 上一篇 下一篇
张溥链,刘宝茹,杨 敏
收稿日期:
2024-07-17
接受日期:
2024-08-27
出版日期:
2025-11-08
发布日期:
2025-02-27
通讯作者:
杨敏,教授,硕士生导师,遵义医科大学附属医院血液内科,贵州省遵义市 563000
作者简介:
张溥链,女,1998年生,贵州省毕节市人,回族,遵义医科大学在读硕士,主要从事骨髓衰竭性疾病研究。
基金资助:
Zhang Pulian, Liu Baoru, Yang Min
Received:
2024-07-17
Accepted:
2024-08-27
Online:
2025-11-08
Published:
2025-02-27
Contact:
Yang Min, Professor, Master’s supervisor, Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
About author:
Zhang Pulian, Master candidate, Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
Supported by:
摘要:
文题释义:
间充质干细胞:是一种多能干细胞,可从多种组织中获取,具有独特的再生、修复、血管生成和免疫抑制特性。骨髓间充质干细胞是造血微环境的核心组成部分,其分化的细胞和衍生因子参与调解正常的骨髓造血过程。中图分类号:
张溥链, 刘宝茹, 杨 敏. 间充质干细胞治疗再生障碍性贫血:抑制或激活其病理演变过程中的相关靶点[J]. 中国组织工程研究, 2025, 29(31): 6800-6810.
Zhang Pulian, Liu Baoru, Yang Min . Mesenchymal stem cells for treatment of aplastic anemia: inhibiting or activating relevant targets in its pathological evolution[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6800-6810.
[1] DEZERN AE, CHURPEK JE. Approach to the diagnosis of aplastic anemia. Blood Adv. 2021;5(12):2660-2671. [2] AHMED P, CHAUDHRY QUN, SATTI TM, et al. Epidemiology of aplastic anemia: a study of 1324 cases. Hematology. 2020;25(1):48-54. [3] PATEL BA, TOWNSLEY DM, SCHEINBERG P. Immunosuppressive therapy in severe aplastic anemia. Semin Hematol. 2022;59(1):21-29. [4] PAN P, CHEN C, HONG J, et al. Autoimmune pathogenesis, immunosuppressive therapy and pharmacological mechanism in aplastic anemia. Int Immunopharmacol. 2023;117:110036. [5] WILFRED G, ONG TC, SH SHAHNAZ SAK, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Severe Aplastic Anemia: A Single Centre Experience in Malaysia. Blood Cell Ther. 2022;5(2):45-53. [6] ZIELIŃSKA P, NOSTER I, WIECZORKIEWICZ-KABUT A, et al. Allogeneic hematopoietic stem cell transplantation for acquired severe aplastic anemia: a summary of a 20-year experience. Pol Arch Intern Med. 2023;133(7-8):16448. [7] VAN LIER YF, VOS J, BLOM B, et al. Allogeneic hematopoietic cell transplantation, the microbiome, and graft-versus-host disease. Gut Microbes. 2023;15(1):2178805. [8] WESTIN JR, SALIBA RM, DE LIMA M, et al. Steroid-Refractory Acute GVHD: Predictors and Outcomes. Adv Hematol. 2011;2011:601953. [9] GARRIGÓS MM, DE OLIVEIRA FA, NUCCI MP, et al. How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models. World J Stem Cells. 2022;14(8):658-679. [10] LIN T, YANG Y, CHEN X. A review of the application of mesenchymal stem cells in the field of hematopoietic stem cell transplantation. Eur J Med Res. 2023;28(1):268. [11] WANG E, ZHANG Y, DING R, et al. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep. 2022;25(1):27. [12] DENG S, ZENG Y, XIANG J, et al. Icariin protects bone marrow mesenchymal stem cells in aplastic anemia by targeting MAPK pathway. Mol Biol Rep. 2022;49(9):8317-8324. [13] GIUDICE V, SELLERI C. Aplastic anemia: Pathophysiology. Semin Hematol. 2022;59(1):13-20. [14] DURRANI J, GROARKE EM. Clonality in immune aplastic anemia: Mechanisms of immune escape or malignant transformation. Semin Hematol. 2022;59(3):137-142. [15] GONNOT M, NEUMANN F, HUET F, et al. Hepatitis-associated Aplastic Anemia. J Pediatr Gastroenterol Nutr. 2022;75(5):553-555. [16] NI R, FAN L, ZHANG L, et al. A mouse model of irradiation and spleen-thymus lymphocyte infusion induced aplastic anemia. Hematology. 2022;27(1):932-945. [17] MERLI P, QUINTARELLI C, STROCCHIO L, et al. The role of interferon-gamma and its signaling pathway in pediatric hematological disorders. Pediatr Blood Cancer. 2021;68(4):e28900. [18] PATEL BA, GROARKE EM, LOTTER J, et al. Long-term outcomes in patients with severe aplastic anemia treated with immunosuppression and eltrombopag: a phase 2 study. Blood. 2022;139(1):34-43. [19] ALVARADO LJ, HUNTSMAN HD, CHENG H, et al. Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFN-γ. Blood. 2019;133(19):2043-2055. [20] ALOBAIDI A, ALBADRY A, MURRAY A. Very Severe Aplastic Anemia in a 26-Year-Old Male: Implications for Prognosis and Treatment Options. Cureus. 2023;15(9):e45750. [21] HUANG J, GE M, LU S, et al. Impaired Autophagy in Adult Bone Marrow CD34+ Cells of Patients with Aplastic Anemia: Possible Pathogenic Significance. PLoS One. 2016;11(3):e0149586. [22] WANG H, LENG Y, GONG Y. Bone Marrow Fat and Hematopoiesis. Front Endocrinol (Lausanne). 2018;9:694. [23] HE C, YANG C, ZENG Q, et al. Umbilical cord-derived mesenchymal stem cells cultured in the MCL medium for aplastic anemia therapy. Stem Cell Res Ther. 2023;14(1):224. [24] LU SH, GE ML, ZHENG YZ, et al. Effect of CD106+ Mesenchymal Stem Cell on Bone Marrow Vascular Failure in Patients with Aplastic Anemia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2018;40(2):178-186. [25] TANG SQ, XING T, LYU ZS, et al. Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia. Sci China Life Sci. 2023; 66(11):2553-2570. [26] TRIPATHY NK, SINGH SP, NITYANAND S. Enhanced adipogenicity of bone marrow mesenchymal stem cells in aplastic anemia. Stem Cells Int. 2014;2014:276862. [27] SHIPOUNOVA IN, PETROVA TV, SVINAREVA DA, et al. Alterations in hematopoietic microenvironment in patients with aplastic anemia. Clin Transl Sci. 2009;2(1):67-74. [28] YU W, WANG Q, GE M, et al. Cluster analysis of lymphocyte subset from peripheral blood in newly diagnosed idiopathic aplastic anaemia patients. Ann Med. 2022;54(1):2431-2439. [29] QI W, ZHANG Y, WANG Y, et al. Abnormal expression of histone acetylases in CD8+ T cells of patients with severe aplastic anemia. J Clin Lab Anal. 2022;36(4):e24339. [30] XING L, LIU C, FU R, et al. CD8+HLA-DR+ T cells are increased in patients with severe aplastic anemia. Mol Med Rep. 2014;10(3):1252-1258. [31] WEN S, HE L, ZHONG Z, et al. Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis. Front Immunol. 2021;12:741934. [32] WANG J, ZHAO X, WAN YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol. 2023;20(9):1002-1022. [33] ZHAO SS, ZHU XJ, WU RH. Relationship Between the Changes of Regulatory T Cells and Th17 Cells and the Prognosis of Children with Aplastic Anemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(5): 1674-1678. [34] HUANG J, PU Y, XU K, et al. High expression of HIF-1α alleviates benzene-induced hematopoietic toxicity and immunosuppression in mice. Environ Pollut. 2022;311:119928. [35] LIN Q, LIU Z, LUO M, et al. Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition. Sci China Life Sci. 2019;62(9):1168-1177. [36] LIU C, SHENG W, FU R, et al. Differential expression of the proteome of myeloid dendritic cells in severe aplastic anemia. Cell Immunol. 2013;285(1-2):141-148. [37] SUN Y, WU C, LIU C, et al. Myeloid dendritic cells in severe aplastic anemia patients exhibit stronger phagocytosis. J Clin Lab Anal. 2021; 35(12):e24063. [38] SUN Y, ZHANG Y, YU H, et al. Cofilin-1 participates in the hyperfunction of myeloid dendritic cells in patients with severe aplastic anaemia. J Cell Mol Med. 2022;26(12):3460-3470. [39] LI ZS, SHAO ZH, FU R, et al. Percentages and functions of natural killer cell subsets in peripheral blood of patients with severe aplastic anemia. Zhonghua Yi Xue Za Zhi. 2011;91(16):1084-1087. [40] BRZEŹNIAKIEWICZ-JANUS K, RUPA-MATYSEK J, GIL L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep. 2020;16(3):472-481. [41] MELGUIZO-SANCHIS D, XU Y, TAHEEM D, et al. iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis. 2018;9(2):128. [42] YOSHIZATO T, DUMITRIU B, HOSOKAWA K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015; 373(1):35-47. [43] BABUSHOK DV, PERDIGONES N, PERIN JC, et al. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet. 2015;208(4):115-128. [44] SCHOETTLER ML, NATHAN DG. The Pathophysiology of Acquired Aplastic Anemia: Current Concepts Revisited. Hematol Oncol Clin North Am. 2018;32(4):581-594. [45] DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. [46] AFSHARI A, SHAMDANI S, UZAN G, et al. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res Ther. 2020;11(1):54. [47] VAN RENSBURG MJ, CROUS A, ABRAHAMSE H. Potential of Photobiomodulation to Induce Differentiation of Adipose- Derived Mesenchymal Stem Cells into Neural Cells. Curr Stem Cell Res Ther. 2021;16(3):307-322. [48] SUN Y, LIU J, XU Z, et al. Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. Aging (Albany NY). 2020;13(2):2231-2250. [49] JIANG W, XU J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712. [50] ZHOU Y, YAMAMOTO Y, XIAO Z, et al. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J Clin Med. 2019;8(7):1025. [51] ARABPOUR M, SAGHAZADEH A, REZAEI N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021;97:107823. [52] FATHOLLAHI A, GABALOU NB, ASLANI S. Mesenchymal stem cell transplantation in systemic lupus erythematous, a mesenchymal stem cell disorder. Lupus. 2018;27(7):1053-1064. [53] WŁODARCZYK M, CZERWIŃSKA K, WŁODARCZYK J, et al. Current Overview on the Use of Mesenchymal Stem Cells for Perianal Fistula Treatment in Patients with Crohn’s Disease. Life (Basel). 2021;11(11): 1133. [54] ZHANG Y, GU J, WANG X, et al. Opportunities and challenges: mesenchymal stem cells in the treatment of multiple sclerosis. Int J Neurosci. 2023;133(9):1031-1044. [55] AQMASHEH S, SHAMSASANJAN K, AKBARZADEHLALEH P, et al. Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Adv Pharm Bull. 2017;7(2):165-177. [56] WANG H, BI X, ZHANG R, et al. Adipose-Derived Mesenchymal Stem Cell Facilitate Hematopoietic Stem Cell Proliferation via the Jagged-1/Notch-1/Hes Signaling Pathway. Stem Cells Int. 2023;2023:1068405. [57] KHARE T, BISSONNETTE M, KHARE S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci. 2021;22(14):7371. [58] BUDGUDE P, KALE V, VAIDYA A. Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biol Int. 2020;44(5):1078-1102. [59] ATMAR K, TULLING AJ, LANKESTER AC, et al. Functional and Immune Modulatory Characteristics of Bone Marrow Mesenchymal Stromal Cells in Patients With Aplastic Anemia: A Systematic Review. Front Immunol. 2022;13:859668. [60] DENG S, XIANG JJ, SHEN YY, et al. Effects of VEGF-Notch Signaling Pathway on Proliferation and Apoptosis of Bone Marrow MSC in Patients with Aplastic Anemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2019;27(6):1925-1932. [61] ZHANG X, LIU L, DOU C, et al. PPAR Gamma-Regulated MicroRNA 199a-5p Underlies Bone Marrow Adiposity in Aplastic Anemia. Mol Ther Nucleic Acids. 2019;17:678-687. [62] LI JP, WU KH, CHAO WR, et al. Alterations of mesenchymal stem cells on regulating Th17 and Treg differentiation in severe aplastic anemia. Aging (Albany NY). 2023;15(2):553-566. [63] LI H, WANG L, PANG Y, et al. In patients with chronic aplastic anemia, bone marrow-derived MSCs regulate the Treg/Th17 balance by influencing the Notch/RBP-J/FOXP3/RORγt pathway. Sci Rep. 2017; 7:42488. [64] LI J, YANG S, LU S, et al. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia. PLoS One. 2012;7(11):e47764. [65] HUO J, ZHANG L, REN X, et al. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia. Stem Cell Res Ther. 2020;11(1):59. [66] GONZAGA VF, WENCESLAU CV, VIEIRA DP, et al. Therapeutic Potential of Human Immature Dental Pulp Stem Cells Observed in Mouse Model for Acquired Aplastic Anemia. Cells. 2022;11(14):2252. [67] ZHANG J, ZHOU S, ZHOU Y, et al. Adipose-Derived Mesenchymal Stem Cells (ADSCs) With the Potential to Ameliorate Platelet Recovery, Enhance Megakaryopoiesis, and Inhibit Apoptosis of Bone Marrow Cells in a Mouse Model of Radiation-Induced Thrombocytopenia. Cell Transplant. 2016;25(2):261-273. [68] DIAZ MF, HORTON PD, DUMBALI SP, et al. Bone marrow stromal cell therapy improves survival after radiation injury but does not restore endogenous hematopoiesis. Sci Rep. 2020;10(1):22211. [69] FOUILLARD L, BENSIDHOUM M, BORIES D, et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia. 2003;17(2):474-476. [70] CLÉ DV, SANTANA-LEMOS B, TELLECHEA MF, et al. Intravenous infusion of allogeneic mesenchymal stromal cells in refractory or relapsed aplastic anemia. Cytotherapy. 2015;17(12):1696-1705. [71] PANG Y, XIAO HW, ZHANG H, et al. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Expanded In Vitro for Treatment of Aplastic Anemia: A Multicenter Phase II Trial. Stem Cells Transl Med. 2017;6(7):1569-1575. [72] LAN Y, LIU F, CHANG L, et al. Combination of umbilical cord mesenchymal stem cells and standard immunosuppressive regimen for pediatric patients with severe aplastic anemia. BMC Pediatr. 2021;21(1):102. [73] DING L, HAN DM, ZHENG XL, et al. A study of human leukocyte antigen-haploidentical hematopoietic stem cells transplantation combined with allogenic mesenchymal stem cell infusion for treatment of severe aplastic anemia in pediatric and adolescent patients. Stem Cells Transl Med. 2021;10(2):291-302. [74] LI T, LUO C, ZHANG J, et al. Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Stem Cell Res Ther. 2021; 12(1):246. [75] YUAN F, LI M, WEI X, et al. Co-transplantation of umbilical cord mesenchymal stem cells and peripheral blood stem cells in children and adolescents with refractory or relapsed severe aplastic anemia. Pediatr Hematol Oncol. 2024;41(5):322-335. [76] 丁宇斌,唐玉凤,唐旭东.干细胞移植治疗重型再生障碍性贫血:研究应用与进展[J].中国组织工程研究,2020,24(19):3084-3092. [77] SHENG XF, LI H, HONG LL, et al. Combination of Haploidentical Hematopoietic Stem Cell Transplantation with Umbilical Cord-Derived Mesenchymal Stem Cells in Patients with Severe Aplastic Anemia: A Retrospective Controlled Study. Turk J Haematol. 2022;39(2):117-129. [78] 韩冬梅,丁丽,郑晓丽,等.单倍体造血干细胞移植联合间充质干细胞治疗重型再生障碍性贫血[J].中国实验血液学杂志,2022, 30(4):1230-1237. [79] AIZAWA K, PELTIER D, MATSUKI E, et al. How does transfusion-associated graft-versus-host disease compare to hematopoietic cell transplantation-associated graft-versus-host disease? Transfus Apher Sci. 2022;61(2):103405. [80] HILL GR, BETTS BC, TKACHEV V,et al. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol. 2021; 39:19-49. [81] AKÇAY A, ATAY D, ERBEY F, et al. Safety and Efficacy of Co-transplantation of Hematopoietic Stem Cells Combined With Human Umbilical Cord-Derived Mesenchymal Stem Cells in Children With Severe Aplastic Anemia: A Single-Center Experience. Exp Clin Transplant. 2022;20(12):1114-1121. [82] DING L, HAN DM, ZHENG XL, et al. Infusion of haploidentical hematopoietic stem cells combined with mesenchymal stem cells for treatment of severe aplastic anemia in adult patients yields curative effects. Cytotherapy. 2022;24(2):205-212. [83] LI XH, GAO CJ, DA WM, et al. Reduced intensity conditioning, combined transplantation of haploidentical hematopoietic stem cells and mesenchymal stem cells in patients with severe aplastic anemia. PLoS One. 2014;9(3):e89666. [84] KEBRIAEI P, HAYES J, DALY A, et al. A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2020;26(5):835-844. [85] ZHAO L, CHEN S, YANG P, et al. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: prevention and treatment of graft-versus-host disease. Stem Cell Res Ther. 2019;10(1):182. [86] 韩振霞,时庆,汪大琨,等.骨髓源与脐带源间充质干细胞的基本生物学特征比较[J].中国实验血液学杂志,2013,21(5):1248-1255. [87] STAB BR 2ND, MARTINEZ L, GRISMALDO A, et al. Mitochondrial Functional Changes Characterization in Young and Senescent Human Adipose Derived MSCs. Front Aging Neurosci. 2016;8:299. [88] SAREEN N, SEQUIERA GL, CHAUDHARY R, et al. Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior. Stem Cell Res Ther. 2018;9(1):121. |
[1] | 余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922. |
[2] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[3] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[4] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[5] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[6] | 胡涛涛, 刘 兵, 陈 诚, 殷宗银, 阚道洪, 倪 杰, 叶凌霄, 郑祥兵, 严 敏, 邹 勇. 过表达神经调节蛋白1的人羊膜间充质干细胞促进小鼠皮肤创面愈合[J]. 中国组织工程研究, 2025, 29(7): 1343-1349. |
[7] | 金 凯, 唐 婷, 李美乐, 谢裕安. 人脐带间充质干细胞条件培养基及外泌体对肝癌细胞增殖、迁移、侵袭和凋亡的影响[J]. 中国组织工程研究, 2025, 29(7): 1350-1355. |
[8] | 李帝均, 酒精卫, 刘海峰, 闫 磊, 李松岩, 王 斌. 明胶三维微球装载人脐带间充质干细胞修复慢性肌腱病[J]. 中国组织工程研究, 2025, 29(7): 1356-1362. |
[9] | 刘 琪, 李林臻, 李玉生, 焦泓焯, 杨 程, 张君涛. 淫羊藿苷含药血清促进3种细胞共培养体系中软骨细胞增殖和干细胞成软骨分化[J]. 中国组织工程研究, 2025, 29(7): 1371-1379. |
[10] | 章镇宇, 梁秋健, 杨 军, 韦相宇, 蒋 捷, 黄林科, 谭 桢. 新橙皮苷治疗骨质疏松症的靶点及对骨髓间充质干细胞成骨分化的作用[J]. 中国组织工程研究, 2025, 29(7): 1437-1447. |
[11] | 彭洪成, 彭国璇, 雷安毅, 林 圆, 孙 红, 宁 旭, 尚显文, 邓 进, 黄明智. 血小板衍生生长因子BB参与生长板损伤修复的作用与机制[J]. 中国组织工程研究, 2025, 29(7): 1497-1503. |
[12] | 李佳林, 张耀东, 娄艳茹, 于 洋, 杨 蕊. 间充质干细胞分泌组发挥作用的分子机制[J]. 中国组织工程研究, 2025, 29(7): 1512-1522. |
[13] | 何 波, 陈 文, 马岁录, 何志军, 宋 渊, 李金鹏, 刘 涛, 魏晓涛, 王威威, 谢 婧. 皮瓣缺血再灌注损伤的发病机制及治疗进展[J]. 中国组织工程研究, 2025, 29(6): 1230-1238. |
[14] | 孙现娟, 王秋花, 张锦艺, 杨杨杨, 王文双, 张晓晴. 不同静电纺丝膜上骨髓间充质干细胞的黏附、增殖与成血管平滑肌分化[J]. 中国组织工程研究, 2025, 29(4): 661-669. |
[15] | 刘浩洋, 谢 强, 沈梦然, 任岩松, 马金辉, 王佰亮, 岳德波, 王卫国. 可降解锌基合金在骨缺损修复重建中的应用及研究热点和不足[J]. 中国组织工程研究, 2025, 29(4): 839-845. |
1.1.6 检索策略 以PubMed数据库为例,检索策略见图1。
1.1.7 检索文献量 中文文献585篇,英文文献6 327篇。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
间充质干细胞:是一种多能干细胞,可从多种组织中获取,具有独特的再生、修复、血管生成和免疫抑制特性。骨髓间充质干细胞是造血微环境的核心组成部分,其分化的细胞和衍生因子参与调解正常的骨髓造血过程。#br# 再生障碍性贫血:是一种骨髓造血功能衰竭性疾病,导致外周血细胞减少和造血细胞增殖能力下降,在亚洲国家较多见,主要的病理改变为骨髓造血细胞和造血组织减少、骨髓脂肪化发展。再生障碍性贫血的发病机制复杂,主要与造血干细胞缺陷、造血微环境异常、免疫异常和遗传因素有关。#br##br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
近年来,间充质干细胞独特的多能性和低免疫原性在免疫相关疾病和组织再生领域备受瞩目。间充质干细胞可重塑造血、调节造血微环境、调节导致再生障碍性贫血免疫失衡和移植物抗宿主病产生的免疫失调,为治疗再生障碍性贫血带来了良好的细胞治疗前景。目前,间充质干细胞与再生障碍性贫血相关的研究处于试验阶段,还未普及到临床,本综述总结了目前间充质干细胞对再生障碍性贫血治疗作用的研究进展,希望为治疗再生障碍性贫血提供新的理论依据。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||