[1] Zhu J, Marchant RE.Design properties of hydrogel tissue-engineering scaffolds.Expert Rev Med Devices. 2011; 8(5):607-626.[2] Oryan A, Sahvieh S.Effectiveness of chitosan scaffold in skin, bone and cartilage healing.Int J Biol Macromol.2017;104(Pt A): 1003-1011.[3] 徐敬,赵建宁,徐海栋,等.壳聚糖及其衍生物在软骨组织工程中的应用[J].中国组织工程研究, 2015,19(25):4081-4085.[4] 陈道玉,张中民,姜丽丽.壳聚糖支架材料在组织工程中的应用与未来[J].中国组织工程研究,2017, 21(30):4893-900.[5] Ali A, Ahmed S.A review on chitosan and its nanocomposites in drug delivery.Int J Biol Macromol. 2018;109:273-286.[6] Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R,et al. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.Biomed Res Int. 2015; 2015:821279.[7] Radhakrishnan J, Subramanian A, Krishnan UM,et al. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules.2017;18(1):1-26.[8] Nukavarapu SP,Dorcemus DL.Osteochondral tissue engineering: current strategies and challenges.Biotechnol Adv. 2013;31(5):706-721.[9] Ahmed S, Annu, Ali A, et al. A review on chitosan centred scaffolds and their applications in tissue engineering.Int J Biol Macromol. 2018;116:849-862.[10] 傅月荷,吕青.生物来源水凝胶在组织工程中的应用与进展[J].中国修复重建外科杂志,2014,28(8):1030-1036.[11] Chenite A, Chaput C, Wang D, et al.Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials.2000;21(21):2155-2161.[12] 康肸,邓爱鹏,杨树林.壳聚糖基温敏水凝胶的研究进展[J].中国生物工程杂志,2018,38(5):79-84.[13] Wu J, Liu J, Shi Y,et al. Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/ hydroxyapatite/glycerophosphate hydrogels.J Mech Behav Biomed Mater. 2016;64:161-172.[14] Song K, Li L, Yan X,et al. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel.Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):231-240.[15] Deng A, Kang X, Zhang J, et al. Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated.Mater Sci Eng C Mater Biol Appl. 2017;78: 1147-1154.[16] Su JY, Chen SH, Chen YP, et al. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold.Int J Mol Sci. 2017;18(1). pii: E87. doi: 10.3390/ijms 18010087. [17] Chen Z, Zhao M, Liu K,et al. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation.J Mater Sci Mater Med. 2014; 25(8): 1903-1913.[18] Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes.J Zhejiang Univ Sci B. 2015;16(11):914-923.[19] Oussedik S, Tsitskaris K, Parker D.Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy. 2015;31(4):732-744.[20] Man Z, Hu X, Liu Z,et al.Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials. 2016;108:157-167.[21] Song K, Li L, Yan X, et al. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.J Mater Sci Mater Med. 2016; 27(6):114. [22] 刘相杰,宋科官.生物支架材料及间充质干细胞在骨组织工程中的研究与应用[J].中国组织工程研究, 2018,22(10):1618-24.[23] Dai R, Wang Z, Samanipour R,et al. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications.Stem Cells Int.2016;2016:6737345.[24] Tamaddon M, Burrows M, Ferreira SA,et al. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro.Sci Rep. 2017;7:43519.[25] Yang J,Zhang YS,Yue K,et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.Acta Biomater. 2017;57:1-25.[26] Huang H, Zhang X, Hu X, et al. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering.Biomed Mater. 2014;9(3):035008. [27] Lu TJ,Chiu FY,Chiu HY,et al. Chondrogenic Differentiation of Mesenchymal Stem Cells in Three-Dimensional Chitosan Film Culture.Cell Transplant. 2017;26(3):417-427.[28] Zhu Y,Song K,Jiang S,et al. Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor.Appl Biochem Biotechnol. 2017;181(1):250-266.[29] 林涛.壳聚糖水凝胶复合脂肪间充质干细胞修复兔关节软骨缺损[J].中华创伤杂志,2016,32(4):357-362. [30] Madry H, Rey-Rico A, Venkatesan JK, et al. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering.Tissue Eng Part B Rev. 2014;20(2):106-125.[31] Yang YH, Barabino GA.Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-β1.Tissue Eng Part A. 2013;19(21-22):2349-2360.[32] Madry H, Kaul G, Zurakowski D, et al.Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model.Eur Cell Mater. 2013;25:229-247.[33] Kessler MW,Grande DA.Tissue engineering and cartilage. Organogenesis.2008;4(1):28-32.[34] Sporn MB, Roberts AB, Wakefield LM, et al.Transforming growth factor-beta: biological function and chemical structure. Science.1986;233(4763):532-453.[35] Ahsan SM, Thomas M, Reddy KK, et al. Chitosan as biomaterial in drug delivery and tissue engineering.Int J Biol Macromol.2018;110:97-109.[36] Merlin Rajesh Lal LP, Suraishkumar GK, Nair PD. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton's Jelly mesenchymal stem cells.J Biomed Mater Res A.2017;105(7):1845-1855.[37] Shen J, Gao Q, Zhang Y,et al. Autologous platelet?rich plasma promotes proliferation and chondrogenic differentiation of adipose?derived stem cells.Mol Med Rep. 2015;11(2):1298-1303.[38] Krüger JP,Ketzmar AK,Endres M,et al.Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds.J Biomed Mater Res B Appl Biomater.2014;102(4):681-692.[39] Sadeghi-Ataabadi M,Mostafavi-Pour Z,Vojdani Z,et al. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications.Mater Sci Eng C Mater Biol Appl. 2017;71:372-380.[40] Sancho-Tello M, Martorell S, Mata Roig M, et al. Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds.J Tissue Eng. 2017;8:2041731417697545.[41] 赵荣兰,左爱军,梁东春,等.CS/igf-1基因复合物促骨髓基质细胞增殖及分化的研究[J].天津医药,2008,36 (1):35-37.[42] 赵荣兰,任玉平,孙蓓,等.壳聚糖转染胰岛素样生长因子基因促进兔关节软骨损伤修复的实验研究[J].中国修复重建外科杂志, 2010,24(11):1372-1375.[43] 赵荣兰,彭效祥,楚海荣,等.可磷酸化短肽偶联壳聚糖介导兔关节软骨损伤修复的基因治疗[J].中国修复重建外科杂志, 2014, 28(11):1346-52.[44] 赵荣兰,彭效祥,宋伟,等.可磷酸化短肽偶联壳聚糖介导IGF-1和IL-1RA双基因联合治疗兔关节软骨损伤[J].中国生物化学与分子生物学报,2015,31(2):175-181.[45] Kiyotake EA, Beck EC, Detamore MS.Cartilage extracellular matrix as a biomaterial for cartilage regeneration.Ann N Y Acad Sci. 2016;1383(1):139-159.[46] Sivandzade F, Mashayekhan S.Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan.J Biomater Sci Polym Ed.2018;29(6):683-700.[47] Medeiros Borsagli FGL, Carvalho IC, Mansur HS. Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications.Int J Biol Macromol. 2018;114:270-282.[48] Reed S, Lau G, Delattre B, et al. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication. 2016;8(1): 015003.[49] Wang X, Wei C, Cao B, et al. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.ACS Appl Mater Interfaces. 2018;10(21): 18338-18350. |