中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (35): 5685-5690.doi: 10.3969/j.issn.2095-4344.2017.35.018

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

基于术后髋骨CT数据重建个性化骨肌多体动力学模型及步态仿真

李 兴,王洪福,罗 伟,成 博,王俊元,刘 峰   

  1. 中北大学机械与动力工程学院,山西省太原市  030000
  • 出版日期:2017-12-18 发布日期:2018-01-02
  • 通讯作者: 刘峰,教授,中北大学机械工程学院,山西省太原市 030000
  • 作者简介:李兴,男,1993年生,山东省郓城县人,汉族,中北大学在读硕士,主要从事人工关节和生物力学研究。
  • 基金资助:

    国家自然科学基金(21604074)

Musculoskeletal multi-body dynamic simulation on patient-specific hip bone after surgery and gait simulation  

Li Xing, Wang Hong-fu, Luo Wei, Cheng Bo, Wang Jun-yuan, Liu Feng   

  1. School of Mechanical and Power Engineering, North University of China, Taiyuan 030000, Shanxi Province, China
  • Online:2017-12-18 Published:2018-01-02
  • Contact: Liu Feng, Professor, School of Mechanical and Power Engineering, North University of China, Taiyuan 030000, Shanxi Province, China
  • About author:Li Xing, Studying for master’s degree, School of Mechanical and Power Engineering, North University of China, Taiyuan 030000, Shanxi Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 21604074

摘要:

文章快速阅读:

 

 

文题释义:
骨肌多体动力学模型:利用AnyBody软件建立人类的肌肉骨骼系统,肌肉骨骼系统通常被认为是一个刚体系统,允许应用多体动力学的方法来进行研究。
髋骨应力分布:髋骨中的应力集中主要发生在髋臼上部,包括髋臼上边缘。髋骨后上方应力值均大于后下与前上应力值,由于应力的主要分布在髋骨上方的区域,力的传递工作由皮质骨与松质骨的共同参与,皮质骨的弹性模量较大,所以皮质骨区域比松质骨区域传递更多的力。在正常行走时,力的传递主要由髋臼周围区域的皮质骨承担。由于髋骨后上方区域是主要的力的传递区域,所以髋骨后上方的松质骨与皮质骨均承担力的传递。
 
摘要
背景:髋骨体内受力复杂,需要更高效、准确的方法进行有限元分析。
目的:构建与患者术后髋骨相对应的个性化骨肌多体动力学模型并进行步态仿真,探究患者术后髋骨的生物力学行为。
方法:根据患者术后髋骨CT数据,在MIMICS中进行三维重建,在Geomagic Studio完成实体化和位置匹配并在Hypermesh中网格化。利用AnyBody软件建立患者个性化骨肌多体动力学模型,模拟正常人平地行走时的动作,导出髋骨在整个运动过程中受到的肌肉力、关节力和关节力矩,将导出的数据作为有限元分析的边界条件,在软件Abauqus上计算步态过程中髋骨受到的应力、应变的大小及其集中部位。
结果与结论:①关节力在2.1 s时,髋关节3个方向关节力的最大值分别为600,2 000,100 N;②髂骨关节几乎只有在Y方向受力,最大值为1 000 N;③髋关节所受最大应力在30%步态周期处约为12 MPa,最大相对位移为0.5 mm;④结果表明,患者术后髋骨所受应力较大的部位主要集中在骶髂关节附近、髋臼后上方、髂骨中央、耻骨上方,术后髋骨所受应力较正常髋骨偏大,患者在康复过程中应注意活动强度。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0002-3776-8000(李兴)

关键词: 骨科植入物, 数字化骨科, 髋骨, 有限元, 骨肌多体动力学, 步态周期, 国家自然科学基金

Abstract:

BACKGROUND: The biomechanical properties of the hip bone are complex in vivo that requires a more efficient and accurate method for the finite element analysis. 

OBJECTIVE: To develop a musculoskeletal multi-body dynamic model of the patient-specific hip joint after surgery and simulate gait, and to explore the biomechanics of the hip joint.
METHODS: CT data of the patient’s hip joint postoperatively were collected, three-dimension reconstruction underwent in MIMICS, and materialization and position matched on Geomagic Studio and meshed on Hypermesh. A musculoskeletal multi-body dynamic model of the patient-specific hip joint was established using AnyBody software and simulated the normal movements during walking, then export the muscle force, oint forces, joint moment as the Boundary conditions in finite element analysis. Then, the muscle forces, joint forces and torque were obtained and imported to be the boundary conditions for finite element analysis. The stress and strain values and concentration parts were measured on Abauqus during walking.
RESULTS AND CONCLUSION: (1) The maximum value of the joint force in the three directions of the hip joint was 600, 2 000, 100 N at 2.1 seconds. (2) The ilium force was almost only in the Y direction, and the maximum value was 1 000 N. (3) The maximum stress on the hip joint was about 12 MPa at 30% of the gait cycle and the maximum relative displacement was 0.5 mm. (4) To conclude, the stress of the hip after surgery is mainly concentrated on the vicinity of the sacroiliac joint, postersuperior of the acetabulum, middle region of iliac bone, and upper zone of pubic bone; the stress of the hip is higher than that of the normal hip, and the activity intensity should be paid attention during rehabilitation.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Hip Fractures, Finite Element Analysis, Kinetics, Gait, Tissue Engineering

中图分类号: