中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (7): 1069-1073.doi: 10.3969/j.issn.2095-4344.2017.07.016

• 数字化骨科 digital orthopedics • 上一篇    下一篇

构建强直性脊柱炎后凸畸形的三维有限元模型

李 辉,马俊毅,马 原,朱 旭   

  1. 新疆医科大学第六附属医院脊柱外科,新疆维吾尔自治区乌鲁木齐市 830002
  • 修回日期:2016-11-15 出版日期:2017-03-08 发布日期:2017-04-11
  • 通讯作者: 马原,硕士,副教授,新疆医科大学第六附属医院脊柱外科,新疆维吾尔自治区乌鲁木齐市 830002
  • 作者简介:李辉,男,1984年生,山西省临汾市人,汉族,新疆医科大学在读硕士 ,主要从事脊柱外科的研究。
  • 基金资助:

    国家自然科学基金(81360280)

Establishment of a three-dimensional finite element model of ankylosing spondylitis kyphosis

Li Hui, Ma Jun-yi, Ma Yuan, Zhu Xu   

  1. Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
  • Revised:2016-11-15 Online:2017-03-08 Published:2017-04-11
  • Contact: Ma Yuan, Master, Associate professor, Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
  • About author:Li Hui, Studying for master’s degree, Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, Xinjiang Uygur Autonomous Region, China
  • Supported by:

    the National Natural Science Foundation of China, No. 81360280

摘要:

文章快速阅读:

 
 

 

文题释义:
有限元模型的建模方法:由节点和元素构成的有限元模型与机械结构系统的几何外型基本是一致的。有限元模型的建立可分为直接法和间接法(也称实体模型 Solid Modeling),直接法为直接根据机械结构的几何外型建立节点和元素,因此直接法只适应于简单的机械结构系统。反之,间接法适应于节点及元素数目较多的复杂几何外型机械结构系统。该方法通过点、线、面、体积,先建立有限元模型,再进行实体网格划分,以完成有限元模型的建立
强直性脊柱炎:是一种主要侵犯脊柱,并累及骶髂关节和周围关节的慢性进行性炎性疾病。本病又名Marie- strümpell病、Von Bechterew病、类风湿性脊柱炎、类风湿中心型等,现称强直性脊柱炎。由于本病也可侵犯外周关节,并在临床、放射线和病理表现方面与类风湿关节炎相似,故长时间以来一直被看成是类风湿关节炎的一种变异型,称为类风湿性脊柱炎。鉴于强直性脊柱炎患者不具有IgM类风湿因子(血清阴性),以及它在临床和病理表现方面与类风湿关节有炎明显不同,所以1963年美国风湿病学会(ARA)终于决定将两病分开,以“强直性脊柱炎”代替“类风湿性脊柱炎”。
 
摘要
背景:完整的三维有限元模型不仅可以建立逼真的立体模型,进行术前规划,并且还可以在模型上进行模拟截骨,分析生物力学,以期达到指导临床手术的作用。
目的:建立强直性脊柱炎后凸三维有限元模型,为后续的一系列研究提供有效的数字化平台。
方法:选取1例30岁强直性脊柱炎后凸病例C1至骶尾骨的CT断层图像,将CT数据输入Mimics 17.0 医学三维重建软件中,建立脊柱后凸三维几何模型。再将几何模型导入Geomagic Studio 2013软件中,对三维几何模型进行后续优化图像处理,生成修复后的脊柱后凸几何曲面模型。使用Unigraphics NX 8.5导入建立的脊柱后凸曲面模型,建立钙化的韧带模型,切除部分无用的骶骨模型,最后导入ANSYS 15.0 有限元分析软件中,设置材料参数,生成完整的强直性脊柱炎后凸三维有限元模型。
结果与结论:成功建立了完整强直性脊柱炎后凸三维有限元模型,包括10节点四面体单元398 370个,668 538个节点。为下一步的生物力学分析提供了可靠的数字化平台。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程
ORCID: 0000-0001-7422-1154(李辉)

关键词: 骨科植入物, 脊柱植入物, 强直性脊柱炎, 后凸畸形, 生物力学, 有限元分析, 国家自然科学基金

Abstract:

BACKGROUND: The full three-dimensional finite element model can not only establish a realistic three-dimensional model, but also can simulate the osteotomy on the model. Analysis of biomechanics guides the clinical operation.

OBJECTIVE: To establish a three-dimensional finite element model of ankylosing spondylitis kyphosis and provide an effective digital platform for further studies.
METHODS: A 30-year-old male patient with ankylosing spondylitis kyphosis participated voluntarily in the current study. CT images obtained from CT transverse scanning from C1 to the sacrococcyx were imported into Mimics 17.0 software to establish a three-dimensional geometric model of the posterior spine. The geometric model was then imported into Studio Geomagic 2013 software. For the subsequent optimization of image processing, the posterior spine convex geometry was established on the three-dimensional geometric model. We used Unigraphics NX 8.5 to establish the spinal kyphosis surface model, then added modeling of calcification of the ligaments, partial resection of useless sacral bone, and finally, imported the model into ANSYS 15.0 finite element analysis software, then added the ligaments and set the parameters of the material, generating a complete three-dimensional finite element model of ankylosing spondylitis.
RESULTS AND CONCLUSION: A three-dimensional finite element model of complete ankylosing spondylitis was successfully established. Using the ten-node approach, we generated 398 370 tetrahedral elements, and 668 538 nodes. This will provide a reliable digital platform for the next step of biomechanical analysis.

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

Key words: Spondylitis, Ankylosing, Kyphosis, Biomechanics, Finite Element Analysis, Tissue Engineering

中图分类号: