[1] 张莹莹,李旭东,杨佳娟,等.中国 40 岁及以上人群骨关节炎患病率的 Meta 分 析[J].中国循证医学杂志,2021,21(4):407-414.
[2] PERRUCCIO AV, YOUNG JJ, WILFONG JM, et al. Osteoarthritis year in review 2023: Epidemiology & therapy. Osteoarthritis Cartilage. 2024;32(2):159-165.
[3] ROELOFS AJ, DE BARI C. Osteoarthritis year in review 2023: Biology. Osteoarthritis Cartilage. 2024;32(2):148-158.
[4] 关尚琪,滕菲,张志毅,等.骨关节炎流行病学研究进展 [J].中华内科杂志,2017,56(6):450-452.
[5] 吴玥,薛婧,魏强,等.国家动物模型资源共享信息平台的建立[J].中国实验动物学报,2022,30(8):1080-1086.
[6] LIAO Q, XIA W, CHEN J, et al. Circular RNA DNAH14 molecular mechanism in an experimental model of hepatocellular carcinoma treated with Cobalt chloride to mimic the hypoxia-like response of transcatheter arterial chemoembolization. Sci Rep. 2024;14(1):1992.
[7] AMARA R, ZEINEH N, MONGA S, et al. The Effect of the Classical TSPO Ligand PK 11195 on In Vitro Cobalt Chloride Model of Hypoxia-like Condition in Lung and Brain Cell Lines. Biomolecules. 2022;12(10):1397.
[8] SADRI M, DELBANDI AA, RASHIDI N, et al. Cobalt Chloride-induced Hypoxia Can Lead SKBR3 and HEK293T Cell Lines toward Epithelial-mesenchymal Transition. Iran J Allergy Asthma Immunol. 2022;21(4):449-457.
[9] LU J, TANG X, ZHANG D, et al. Didang Tang inhibits intracerebral hemorrhage-induced neuronal injury via ASK1/MKK7/JNK signaling pathway, network pharmacology-based analyses combined with experimental validation. Heliyon. 2022;8(11):e11407.
[10] 李欣怡,王洪伸,谭傲威,等.氯化钴诱导体外人髓核细胞缺氧模型的建立[J].广东医学,2023,44(6):729-734.
[11] 李晓娟,李浩,马永壮,等.缺氧环境通过 HIF-1α/YAP 信号促进大鼠生长板软骨细胞表型维持[J].骨科,2019,10(2):134-139.
[12] 李晓峰,罗世兴,赵劲民,等.芒果苷对缺氧损伤骨髓间充质干细胞凋亡的保护[J].中国组织工程研究,2013,17(49):8481-8487.
[13] 熊波涵,卢晓君,薛文强,等.内减张技术辅助前交叉韧带重建对滇南小耳猪关 节软骨的保护作用[J].中国组织工程研究,2024, 28(14):2221-2226.
[14] GLASSON SS, CHAMBERS MG, VAN DEN BERG WB, et al. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage. 2010;18 Suppl 3:S17-23.
[15] KNIGHTS AJ, REDDING SJ, MAERZ T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol. 2023;35(2):128-134.
[16] NEDUNCHEZHIYAN U, VARUGHESE I, SUN AR, et al. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol. 2022;13:907750.
[17] SAFIRI S, KOLAHI AA, SMITH E, et al. Global,regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 2020;79(6): 819-828.
[18] HUNTER DJ, SCHOFIELD D, CALLANDER E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014; 10(7):437-441.
[19] WALLACE IJ, WORTHINGTON S, FELSON DT, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci U S A. 2017;114(35):9332-9336.
[20] WU J, PAN Y, YU Y, et al. Axial Compressive Loading Attenuates Early Osteoarthritis by Reducing Subchondral Bone Remodeling. Am J Sports Med. 2023;51(7):1752-1764.
[21] TAKAHASHI I, TAKEDA K, TOYAMA T, et al. Histological and immunohistochemical analyses of articular cartilage during onset and progression of pre- and early-stage osteoarthritis in a rodent model. Sci Rep. 2024;14(1):10568.
[22] YU Y, KIM SM, PARK K, et al. Therapeutic Nanodiamonds Containing Icariin Ameliorate the Progression of Osteoarthritis in Rats. Int J Mol Sci. 2023;24(21):15977.
[23] 刘晓辰, 付维力.骨关节炎动物模型的选择[J].中国组织工程研究, 2020,24(11):1769-1776.
[24] 张立,王培民.膝骨关节炎动物模型的选择[J].世界中西医结合杂志,2014,9(7):782-786.
[25] 彭诗,刘娟,朱兆荣,等.电针对木瓜蛋白酶致骨关节炎模型犬血清中 IL-1、TNF-α、SP 的影响[J].中国兽医杂志,2014,50(6):52-54.
[26] KELLY S, DUNHAM JP, MURRAY F, et al. Spontaneous firing in C-fibers and increased mechanical sensitivity in A-fibers of knee joint-associated mechanoreceptive primary afferent neurones during MIA-induced osteoarthritis in the rat. Osteoarthritis Cartilage. 2012;20(4):305-313.
[27] 曹斌,李彦林,李晓林,等.骨关节炎的转基因动物模型[J].中国组织工程研究与临床康复,2011,15(7):1269-1272.
[28] MCCOY AM. Animal Models of Osteoarthritis: Comparisons and Key Considerations. Vet Pathol. 2015;52(5):803-818.
[29] DA SILVA LA, THIRUPATHI A, COLARES MC, et al. The effectiveness of treadmill and swimming exercise in an animal model of osteoarthritis. Front Physiol. 2023;14:1101159.
[30] CHRISTIANSEN BA, CHAN DD, VAN DER MEULEN MCH, et al. Small-Animal Compression Models of Osteoarthritis. Methods Mol Biol. 2023; 2598:345-356.
[31 ] 吴伟,李慧,邹军,等.骨关节炎小动物模型的制备及量表评价[J].中国组织工程研究,2017,21(28):4529-4535.
[32] 刘宇涵,樊渝江,王启光.早期创伤性膝骨关节炎动物模型构建方案的比较 [J].中国组织工程研究,2024,28(4):542-549.
[33] YOUNG C, KOBAYASHI T. Limited roles of Piezo mechanosensing channels in articular cartilage development and osteoarthritis progression. Osteoarthritis Cartilage. 2023;31(6):775-779.
[34] THAMPI P, SEABAUGH KA, PEZZANITE LM, et al. A pilot study to determine the optimal dose of scAAVIL-1ra in a large animal model of post-traumatic osteoarthritis. Gene Ther. 2023;30(12):792-800.
[35] 孙雪莲,刘渊,周红海.牛膝总皂苷对兔膝骨关节炎软骨组织形态变化及关节液中IL-1β、TGF-β1含量的影响[J].中药新药与临床药理,2016,27(3):321-326.
[36] 李情,薛平聚,张小琴,等.不同施灸时间对膝骨关节炎大鼠膝关节软骨组织形态及TNF-α和IL-10表达的影响[J]. 针灸推拿医学(英文版),2023,21(3):187-196.
[37] LI X, CHEN W, LIU D, et al. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med. 2024;18(2):237-257.
[38] OLÁH T, CUCCHIARINI M, MADRY H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage. 2024;32(10):1220-1234.
[39] WOJDASIEWICZ P, PONIATOWSKI ŁA, SZUKIEWICZ D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.
[40] LIANG S, LV ZT, ZHANG JM, et al. Necrostatin-1 Attenuates Trauma-Induced Mouse Osteoarthritis and IL-1β Induced Apoptosis via HMGB1/TLR4/SDF-1 in Primary Mouse Chondrocytes. Front Pharmacol. 2018;9:1378.
|