[1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263.
[2] SERENO M, HERNANDEZ DE CÓRDOBA I, GUTIÉRREZ-GUTIÉRREZ G,
et al. Brain metastases and lung cancer: molecular biology, natural history, prediction of response and efficacy of immunotherapy. Front Immunol. 2023;14:1297988.
[3] CHRISTYANI G, CARSWELL M, QIN S, et al. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci. 2024;25(2):1201.
[4] CORDANI M, DANDO I, AMBROSINI G, et al. Signaling, cancer cell plasticity, and intratumor heterogeneity. Cell Commun Signal. 2024; 22(1):255.
[5] HASAN A, KHAN NA, UDDIN S, et al. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol. 2024;98:31-50.
[6] MOREDDU R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and translational medicine. ADV SCI (WEINH). 2024;11(1):E2304110.
[7] PÉREZ-HERRERO E, LANIER OL, KRISHNAN N, et al. Drug delivery methods for cancer immunotherapy. Drug Deliv Transl Res. 2024;14(1): 30-61.
[8] POPPER H. Pathologic diagnosis of lung cancer - recent developments. Curr Opin Oncol. 2024;36(1):57-62.
[9] SUN J, LUO J, JIANG F, et al. Exploring the cross-cancer effect of circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst. 2024;116(4):565-573.
[10] XU Y, YU Y, YAN R, et al. Modulating β-catenin homeostasis for cancer therapy. Trends Cancer. 2024;10(6):507-518.
[11] YAYAN J, FRANKE KJ, BERGER M, et al. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Mol Biol Rep. 2024;51(1):165.
[12] YAO Q, LIN F, LU C, et al. A Dual-Mechanism Targeted Bioorthogonal Prodrug Therapy. Bioconjug Chem. 2023;34(12):2255-2262.
[13] FALANGA A, BELLAVITA R, BRACCIA S, et al. Hydrophobicity: The door to drug delivery. J Pept Sci. 2024;30(5):e3558.
[14] HAN R, HE H, LU Y, et al. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release. 2024;370:256-276.
[15] LI S, YU Q, LI H, et al. Self-Assembled Peptide Hydrogels in Regenerative Medicine. Gels. 2023;9(8):653.
[16] 卫巍,刘燕飞,何洋,等.β折叠型自组装短肽水凝胶特性及在神经组织工程中的应用前景[J].中国组织工程研究,2018,22(10):1586-1592.
[17] HEREMANS J, MAXIMILIAN AWAD R, BRIDOUX J, et al. Sustained release of a human PD-L1 single-domain antibody using peptide-based hydrogels. Eur J Pharm Biopharm. 2024;196:114183.
[18] CHAVDA VP, TELI D, BALAR PC, et al. Self-assembled peptide hydrogels for the treatment of diabetes and associated complications. Colloids Surf B Biointerfaces. 2024;235:113761.
[19] CURVINO EJ, WOODRUFF ME, ROE EF, et al. Supramolecular Peptide Self-Assemblies Facilitate Oral Immunization. ACS Biomater Sci Eng. 2024;10(5):3041-3056.
[20] DAI J, ASHRAFIZADEH M, AREF AR, et al. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today. 2024;29(7):103981.
[21] HUA Y,SHEN Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. Nanoscale Adv. 2024;6(12):2993-3008.
[22] KHAZAEI S, VARELA-CALVIÑO R, RAD-MALEKSHAHI M, et al. Self-assembled peptide/polymer hybrid nanoplatform for cancer immunostimulating therapies. Drug Deliv Transl Res. 2024;14(2):455-473.
[23] MU R, ZHU D, ABDULMALIK S, et al. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater. 2024;35:181-207.
[24] 卫巍,刘燕飞,张玲,等.自组装短肽水凝胶:止血效应与机制研究进展[J].中国组织工程研究,2019,23(2):310-316.
[25] CHEN H, LIU Z, LI L, et al. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. J Agric Food Chem. 2024;72(11): 5526-5541.
[26] DU Z, FAN B, DAI Q, et al. Supramolecular peptide nanostructures: Self-assembly and biomedical applications. Giant. 2022;9:100082.
[27] NAJAFI H, FARAHAVAR G, JAFARI M, et al. Harnessing the Potential of Self-Assembled Peptide Hydrogels for Neural Regeneration and Tissue Engineering. Macromol Biosci. 2024;24(6):e2300534.
[28] WILLIAMS-NOONAN BJ, KULKARNI K, TODOROVA N, et al. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. Adv Mater. 2024;36(24):e2311103.
[29] LAMPEL A, ULIJN RV, TUTTLE T. Guiding principles for peptide nanotechnology through directed discovery. Chem Soc Rev. 2018; 47(10):3737-3758.
[30] KUANG Y, LI Z, CHEN H, et al. Advances in self-assembled nanotechnology in tumor therapy. Colloids and surfaces. Colloids Surf B Biointerfaces. 2024;237:113838.
[31] TAO K, WANG J, ZHOU P, et al. Self-assembly of short aβ(16-22) peptides: effect of terminal capping and the role of electrostatic interaction. Langmuir. 2011;27(6):2723-2730.
[32] CUI H, MURAOKA T, CHEETHAM AG, et al. Self-assembly of giant peptide nanobelts. Nano Lett. 2009;9(3):945-951.
[33] CAPLAN MR, MOORE PN, ZHANG S, et al. Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction. Biomacromolecules. 2000;1(4):627-631.
[34] ROBERTS D, ROCHAS C, SAIANI A, et al. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides. Langmuir. 2012;28(46):16196-16206.
[35] TANG C, MILLER AF, SAIANI A. Peptide hydrogels as mucoadhesives for local drug delivery. Int J Pharm. 2014;465(1-2):427-435.
[36] GUO Q, LIU Y, MU G, et al. A peptide-drug hydrogel to enhance the anti-cancer activity of chlorambucil. Biomater Sci. 2020;8(20): 5638-5646.
[37] CHEN L, ZHAO X, LIU X, et al. Development of small molecule drugs targeting immune checkpoints. Cancer Biol Med. 2024;21(5): 382-399.
[38] ZHOU YT, CHENG K, LIU B, et al. Recent progress of nano-drugs in neutron capture therapy. Theranostics. 2024;14(8):3193-3212.
[39] CHEN Z, LIU M, WANG N, et al. Unleashing the Potential of Camptothecin: Exploring Innovative Strategies for Structural Modification and Therapeutic Advancements. J Med Chem. 2024;67(5): 3244-3273.
[40] FARHOUDI L, MARYAM HOSSEINIKHAH S, VAHDAT-LASEMI F,
et al. Polymeric micelles paving the Way: Recent breakthroughs in camptothecin delivery for enhanced chemotherapy. Int J Pharm. 2024;659:124292.
[41] CHENG DB, WANG D, GAO YJ, et al. Autocatalytic Morphology Transformation Platform for Targeted Drug Accumulation. J Am Chem Soc. 2019;141(10):4406-4411.
[42] LIU J, LIU J, CHU L, et al. Self-assembling peptide of D-amino acids boosts selectivity and antitumor efficacy of 10-hydroxycamptothecin. ACS Appl Mater Interfaces. 2014;6(8): 5558-5565.
[43] LIANG W, FAN Y, LIU Y, et al. ROS/pH dual-sensitive emodin-chlorambucil co-loaded micelles enhance anti-tumor effect through combining oxidative damage and chemotherapy. Int J Pharm. 2023; 647:123537.
[44] LIANG C, ZHENG D, SHI F, et al. Enzyme-assisted peptide folding, assembly and anti-cancer properties. Nanoscale. 2017;9(33):11987-11993.
[45] LI X, CHEN W, REN J, et al. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. Phytomedicine. 2024; 123:155241.
[46] CHEN G, LI J, CAI Y, et al. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy. Sci Rep. 2017;7:44210.
[47] KARAVASILI C, ANDREADIS DA, KATSAMENIS OL, et al. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol Pharm. 2019;16(6):2326-2341.
[48] ASHWANIKUMAR N, KUMAR NA, SANEESH BABU PS, et al. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. Int J Nanomedicine. 2016;11: 5583-5594.
[49] WU C, JIAO Q, WANG C, et al. Nanofibrillar peptide hydrogels for self-delivery of lonidamine and synergistic photodynamic therapy. Acta Biomater. 2023;155:139-153.
[50] CAO M, LU S, WANG N, et al. Enzyme-Triggered Morphological Transition of Peptide Nanostructures for Tumor-Targeted Drug Delivery and Enhanced Cancer Therapy. ACS Appl Mater Interfaces. 2019;11(18):16357-16366.
[51] BAO W,LI Z. Efficacy and safety of neoadjuvant chemotherapy containing anti-angiogenic drugs, immunotherapy, or PARP inhibitors for ovarian cancer. Crit Rev Oncol Hematol. 2024;194:104238.
[52] CHEN Z, HU T, ZHOU J, et al. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024;340:122419.
[53] RAUF A, JOSHI PB, OLATUNDE A, et al. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy. Med Oncol. 2024;41(5):122.
[54] DAI X, MENG J, DENG S, et al. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel. Theranostics. 2020;10(7):3049-3063.
[55] ZHU L, LIU J, QIU M, et al. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials. 2022;288:121711.
[56] YANG K, ZHOU Y, HUANG B, et al. Sustained release of tumor cell lysate and CpG from an injectable, cytotoxic hydrogel for melanoma immunotherapy. Nanoscale Adv. 2023;5(7):2071-2084.
[57] LI J, SHI K, SABET ZF, et al. New power of self-assembling carbonic anhydrase inhibitor: Short peptide-constructed nanofibers inspire hypoxic cancer therapy. Sci Adv. 2019;5(9):eaax0937.
[58] WANG B, CHEN J, CASERTO JS, et al. An in situ hydrogel-mediated chemo-immunometabolic cancer therapy. Nat Commun. 2022; 13(1):3821.
[59] BECK JD, DIKEN M, SUCHAN M, et al. Long-lasting mRNA-encoded interleukin-2 restores CD8(+) T cell neoantigen immunity in MHC class I-deficient cancers. Cancer Cell. 2024;42(4): 568-582.e511.
[60] WANG J, LU Q, CHEN X, et al. Targeting MHC-I inhibitory pathways for cancer immunotherapy. Trends Immunol. 2024;45(3):177-187.
[61] REINIS M, STEPANEK I, SIMOVA J, et al. Induction of protective immunity against MHC class I-deficient, HPV16-associated tumours with peptide and dendritic cell-based vaccines. Int J Oncol. 2010; 36(3):545-551.
[62] HAO W, HU C, HUANG Y, et al. Coadministration of kla peptide with HPRP-A1 to enhance anticancer activity. PLoS One. 2019;14(11): e0223738.
[63] STANDLEY SM, TOFT DJ, CHENG H, et al. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 2010;70(8):3020-3026.
[64] LIU T, LI P, JIN H, et al. Influence of designer self-assembling nanofiber scaffolds containing anti-cancer peptide motif on hepatoma carcinoma cells. J Biomed Mater Res A. 2017;105(8):2329-2334.
[65] KUANG Y, DU X, ZHOU J, et al. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo. Adv Healthc Mater. 2014;3(8): 1217-1221.
[66] FENG Z, HAN X, WANG H, et al. Enzyme-Instructed Peptide Assemblies Selectively Inhibit Bone Tumors. Chem. 2019;5(9):2442-2449.
[67] CASTELLETTO V, EDWARDS-GAYLE CJC, GRECO F, et al. Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Appl Mater Interfaces. 2019;11(37):33573-33580.
[68] JEENA MT, PALANIKUMAR L, GO EM, et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat Commun. 2017;8(1):26.
[69] WANG H, FENG Z, WANG Y, et al. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. J Am Chem Soc. 2016;138(49):16046-16055.
[70] GHOSH T, WANG S, KASHYAP D, et al. Self-assembled benzoselenadiazole-capped tripeptide hydrogels with inherent in vitro anti-cancer and anti-inflammatory activity. Chem Commun (Camb). 2022;58(54):7534-7537.
[71] LUO S, FENG J, XIAO L, et al. Targeting self-assembly peptide for inhibiting breast tumor progression and metastasis. Biomaterials. 2020;249:120055.
[72] XU H, CHEN C X, HU J, et al. Dual modes of antitumor action of an amphiphilic peptide A(9)K. Biomaterials. 2013;34(11):2731-2737.
[73] LUO R, WAN Y, LUO X, et al. A Rapid Self-Assembly Peptide Hydrogel for Recruitment and Activation of Immune Cells. Molecules. 2022; 27(2):419.
[74] FENG Z, WANG H, YI M, et al. Instructed-Assembly of Small Peptides Inhibits Drug-Resistant Prostate Cancer Cells. Pept Sci (Hoboken). 2020;112(1):10.
[75] ABDEL-RAHMAN RM, ABDEL-MOHSEN AM, FRANKOVA J, et al. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules. 2024;25(6):3449-3463.
[76] HATAMI H, RAHIMAN N,MOHAMMADI M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol. 2024;267(Pt 2): 131401.
[77] HIRTH E, CAO W, PELTONEN M, et al. Self-assembled and perfusable microvasculature-on-chip for modeling leukocyte trafficking. Lab Chip. 2024;24(2):292-304.
[78] LIU G, MA R, LIU P, et al. An injectable nanocomposite hydrogel prevents postoperative tumor recurrence and wound infection via synergistic photothermal-chemo-therapy. J Colloid Interface Sci. 2024;655:809-821.
[79] LIU Y, OKESOLA BO, OSUNA DE LA PEÑA D, et al. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater. 2024;13(17):e2301941.
[80] ZHU H, WU J, ZHAO J, et al. Dual-functional DNA nanogels for anticancer drug delivery. Acta Biomater. 2024;175:240-249.
[81] ZHU W, ZHOU Z, YANG M, et al. Injectable Nanocomposite Immune Hydrogel Dressings: Prevention of Tumor Recurrence and Anti-Infection after Melanoma Resection. Small. 2024; 20(28):e2309476. |