[1] CHANG C, GREENSPAN A, GERSHWIN ME. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J Autoimmun. 2020;110:102460.
[2] MONT MA, SALEM HS, PIUZZI NS, et al. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today?: A 5-Year Update. J Bone Joint Surg Am. 2020;102(12):1084-1099.
[3] POWELL C, CHANG C, GERSHWIN ME. Current concepts on the pathogenesis and natural history of steroid-induced osteonecrosis. Clin Rev Allergy Immunol. 2011;41(1):102-113.
[4] KIM JM, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073.
[5] SUN F, ZHOU JL, LIU ZL, et al. Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head. Biochem Biophys Res Commun. 2022;602: 149-155.
[6] 吴思敏,孙薇,高玉海,等.松脂醇二葡萄糖苷促进体外培养成骨细胞骨形成的作用研究[J].解放军医药杂志,2021,33(5):9-12.
[7] 黄星翔,钟超,叶华,等.基于Nrf2通路探讨松脂醇二葡萄糖苷改善小鼠骨质疏松的机制研究[J].中国临床解剖学杂志,2023,41(2): 162-171.
[8] 尚征亚,曹林忠,杨浩东,等.中医药调控Wnt/β-catenin信号通路治疗激素性股骨头坏死的研究进展[J].中国实验方剂学杂志, 2023,29(20):205-213.
[9] XU H, FANG L, ZENG Q, et al. Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct. 2023;14(2): 946-960.
[10] XIE D, ZHENG GZ, XIE P, et al. Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/β-catenin signaling pathway. Oncotarget. 2017;8(67):111419-111432.
[11] 闫玉珠,于燕,刘俊叶,等.酒精性和激素性股骨头坏死的外周血脂质组学分析[J].中南大学学报(医学版),2022,47(7):872-880.
[12] 孔智恒, 李树山, 王海涛,等.激素性股骨头坏死来源的细胞外囊泡对骨髓间充质干细胞成骨分化的影响[J].中华实验外科杂志, 2022,39(8):1545-1548.
[13] 田心保, 林瑞珠, 朱宁.激素性股骨头缺血性坏死的发病机制[J].中国矫形外科杂志,2022,30(10):915-919.
[14] CUI Q, JO WL, KOO KH, et al. ARCO Consensus on the Pathogenesis of Non-traumatic Osteonecrosis of the Femoral Head. J Korean Med Sci. 2021;36(10):e65.
[15] CAI T, CHEN S, WU C, et al. Erythropoietin suppresses osteoblast apoptosis and ameliorates steroid-induced necrosis of the femoral head in rats by inhibition of STAT1-caspase 3 signaling pathway. BMC Musculoskelet Disord. 2023;24(1):894.
[16] DIRCKX N, MOORER MC, CLEMENS TL, et al. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019;15(11):651-665.
[17] 张鑫,张晓峰,徐西林,等.激素对H型血管的抑制作用与骨质疏松症发病的探讨[J].中国骨质疏松杂志,2022,28(5):706-712.
[18] HUANG C, WEN Z, NIU J, et al. Steroid-Induced Osteonecrosis of the Femoral Head: Novel Insight Into the Roles of Bone Endothelial Cells in Pathogenesis and Treatment. Front Cell Dev Biol. 2021;9:777697.
[19] 刘聪,郭非非,肖军平,等.杜仲不同部位化学成分及药理作用研究进展[J].中国中药杂志,2020,45(3):497-512.
[20] WANG Y, ZHANG J, WANG L, et al. Twelve-component pharmacokinetic study of rat plasma after oral administration of You-Gui-Wan in osteoporosis rats with kidney-yin deficiency and kidney-yang deficiency. Biomed Chromatogr. 2023;37(6):e5619.
[21] 谢高倩,高玉海,魏朋,等.松脂醇二葡萄糖苷对青年大鼠骨代谢的影响[J].中国药理学通报,2022,38(12):1785-1790.
[22] LEE JH, WEI YJ, ZHOU ZY, et al. Efficacy of the herbal pair, Radix Achyranthis Bidentatae and Eucommiae Cortex, in preventing glucocorticoid-induced osteoporosis in the zebrafish model. J Integr Med. 2022;20(1):83-90.
[23] DE VRIES TJ, KLEEMANN AS, JIN J, et al. The Differential Effect of Metformin on Osteocytes, Osteoblasts, and Osteoclasts. Curr Osteoporos Rep. 2023;21(6):743-749.
[24] VLASHI R, ZHANG X, WU M, et al. Wnt signaling: Essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2023;10(4): 1291-1317.
[25] MOORER MC, RIDDLE RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul). 2018;33(3):318-330.
[26] OTON-GONZALEZ L, MAZZIOTTA C, IAQUINTA MR, et al. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci. 2022;23(3):1500.
[27] LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.
[28] RONG X, KOU Y, ZHANG Y, et al. ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways. Drug Des Devel Ther. 2022;16:3929-3946.
[29] MIZOKAMI A, KAWAKUBO-YASUKOCHI T, HIRATA M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017;132:1-8.
[30] CAMOZZI V, TOSSI A, SIMONI E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13-17.
[31] DEPALLE B, MCGILVERY CM, NOBAKHTI S, et al. Osteopontin regulates type I collagen fibril formation in bone tissue. Acta Biomater. 2021; 120:194-202.
[32] XUE Z, WANG X, XU D. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization. Phys Chem Chem Phys. 2022; 24(31):18931-18942.
[33] FERRARO V, GAILLARD-MARTINIE B, SAYD T, et al. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int J Biol Macromol. 2017;97:55-66. |