Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (47): 7653-7658.doi: 10.3969/j.issn.2095-4344.2014.47.020
Previous Articles Next Articles
Zhang Kai-le1, Wang Ying1, Guo Xu-ran2, Chen Jian-feng2, Mo Xiu-mei2, Fu Qiang1, Chen Rong1
Revised:
2014-11-03
Online:
2014-11-19
Published:
2014-11-19
Contact:
Chen Rong, Associate chief physician, Department of Urinary Surgery, Sixth People’s Hospital of Shanghai, Shanghai 200233, China
About author:
Zhang Kai-le, Studying for doctorate, Physician, Department of Urinary Surgery, Sixth People’s Hospital of Shanghai, Shanghai 200233, China
Supported by:
the Basic Research Project of Shanghai Science and Technology Committee, No. 14JC1492100
CLC Number:
Zhang Kai-le, Wang Ying, Guo Xu-ran, Chen Jian-feng, Mo Xiu-mei, Fu Qiang, Chen Rong . Three-dimensional tissue engineering scaffolds with electrospinning technique: application and prospects[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(47): 7653-7658.
2.1 改进电纺原料 2.1.1 添加活性原料 为了克服细胞难以渗透进入传统静电纺支架这一难题,首要解决的问题是使用何种原材料进行电纺,从而促进细胞与支架之间的生物识别性,使细胞更易于吸附于支架表面并向支架内部迁移。Chiu等[12]的研究证实胶原与聚左旋乙酸混合电纺所制作的纳米纤维支架与单纯聚左旋乙酸支架比较,虽然在细胞黏附方面没有明显区别,然而前者更加能促进细胞向支架内部迁移。细胞在支架上培养1周后可见细胞对支架的穿透率分别为85%和32%。原因在于胶原物质较聚左旋乙酸更接近于细胞外基质,且随着胶原的快速降解,更易形成大孔径结构。 为了将细胞均匀地分布于支架内部,有学者尝试将血管平滑肌细胞悬液与酯聚氨酯尿素溶液混合,将该混合物同时进行电纺制备生物支架。之后采用静态和动态旋转两种模式进行细胞-支架复合物的培养。在相同的时间段内进行MTT实验检测细胞的成活状态,发现动态旋转培养的细胞活性为静态培养的2.4倍。组织学检测证明动态培养的细胞能够更加均匀地分布于支架内部。该方法较传统方法有明显进步,然而可能也具有多个缺点,首先不可排除有机溶剂对细胞的毒性作用,其次是细胞在电纺过程中受到的剪切力伤害。为了保证细胞在凝固后电纺溶液中的活性和功能表达,还需要结合先进的生物反应器技术进一步研究[13]。 2.1.2 原料析出法 最常用的原料析出法是将易溶性材料与目标材料共纺,随着易溶材料的降解,保留了目标材料所形成的大孔径三维结构。Phipps等[14]评估了多种用于增加静电纺支架孔径的方法,发现将水溶性高分子聚合物聚环氧乙烷与其他聚合物混纺所制备的支架能够形成更大的孔径,能够充分满足骨髓干细胞的支架内渗透。Wang等[15]将该方法进行了改进,在进行静电纺聚已内酯纤维的同时进行聚环氧乙烷微粒的喷射。之后聚环氧乙烷微粒从复合物中快速降解,可获得满意的孔隙率和空隙直径,该方法能够通过改变微粒的大小和数量改变孔径的特征。在成纤维细胞体外培养和动物皮下包埋实验中都可证实该方法对细胞迁移的明显促进作用。作者通过控制电纺时是否加入聚环氧乙烷微粒,从而制备出一种具有致密和疏松双层结构的血管组织工程支架,扫描电镜显示支架两层之间过度平缓,没有明显的分层现象。新型支架的机械强度和孔隙率能够满足血管移植的需要。 与上述方法类似的是盐析法,Kim等[16]将透明质酸胶原溶液与钠盐溶液以一定比例混合后电纺,随着钠盐成分的析出,可以得到具有大孔隙的纳米纤维膜。体外实验证实了其对猪软骨细胞的黏附和扩增有不同程度的促进作用。盐析法也可通过改变盐类的分子大小和浓度,调整支架的孔径大小和孔隙率。在同样原理的基础下,Wang 等[17]将混合有内含纳米级别碳酸钙盐微粒的聚已内酯溶液进行静电纺,在盐分析出之后形成了纳米级别孔隙的静电纺纤维。此外,也有作者将原料析出法结合动物明胶制作大孔径支架,因此可见,若能找到合适的易溶性原料,析出法可能是一种简便易行且应用前景较广的三维支架制作方法。但是该方法的缺陷在于不能制备出具有微米级别孔隙的静电纺纳米支架,其原因在于微米级别的盐粒子极易堵塞静电纺流出道的针孔,不利于形成具有连续性纳米纤维的支架,限制了微米级别细胞的渗透。 2.1.3 多种纤维混纺 由于静电纺纳米纤维膜的孔径较小且致密,而微米级纤维膜的孔隙较大但表面积体积比过小,不利于细胞的黏附和功能表达,因此通过将纳米级和微米级纤维同时电纺,不但可以克服两者各自的缺点,还能够发挥各自的优点,是一种相对简单的三维支架制作方法。循环重复改变纳米纤维和微米纤维的产生可制备多层结构的纳米-微米混合支架,然而只有在流体灌注动态培养情况下可观察到较薄的支架中有更好的细胞渗透。随着支架厚度的增加,无论是在动态培养还是在静态培养下,细胞都无法渗透进入纳米-微米纤维混合支架[18]。Thorvaldsson等[19]将纳米纤维电纺于微米纤维之上,得到了95%左右孔隙率的生物支架。通过与单纯纳米纤维支架和单纯微米纤维支架对比,证实这种混合纤维制成的高孔隙率支架对软骨细胞的渗透有明显促进作用。 在纳米纤维和微米纤维混合制作纳米支架领域,Park等[20]将静电纺技术和聚合物溶解沉积技术两种制作生物支架的方法结合,其过程为静电纺和聚合物溶解沉积交替工作,在静电纺形成一层纳米级纤维膜后,聚合物溶解沉积在纳米纤维膜表面形成一层微米级纤维膜,如此反复进行,能够形成生物力学性能优越并具有疏松多孔结构三维支架。 Yang等[21]通过两个不同的接收系统,制作出有序排列的纳米纱和随机排列纳米纤维混合组成的新型静电纺纳米纤维支架。形态学分析显示这种材料形成了三维微观结构,与传统纳米纤维支架相比,具有更大的孔隙直径和孔隙率;生物相容性分析显示骨髓间充质干细胞在新型材料上有更加活跃的扩增率;纳米纱材料修饰的纳米纤维膜在平行方向上的力学强度得到了进一步增强,重要的是这种材料明显增加了细胞的渗透生长。 为了克服传统静电纺纤维膜的致密纤维结构,Jin等[22]使用两种性能差异较大的材料同时电纺,分别为疏水的聚乳酸和亲水的聚乙烯基吡咯烷酮。将含有两种原材料的支架浸入水中,可导致聚乙烯基吡咯烷酮纤维在保持与PCNL纤维平行取向性结构的同时,发生空间上的弯曲变形,因此带动整个双组分纤维形成空间构象的改变,增大支架体积,显著扩大了孔隙内容积,对体外和体内实验中的细胞渗透起到重要促进作用。 2.2 改变电纺环境 2.2.1 纤维产生环节干预 为了在相似的纤维直径下获得不同的孔隙直径,则需要对常规静电纺之外的环境和参数进行调整。多个研究通过影响纳米纤维产生到接收之间的短暂过程,避免其形成致密的结构。在静电纺过程中,当纳米纤维到达接收器时,残留的溶液能够使纳米纤维互相粘连,并形成致密的膜片。因此,若能在纳米纤维到达接收器之前加速水分的蒸发,能够避免纳米纤维之间的粘连,得到结构疏松的纳米纤维膜。根据该原理,Shabani等[23]设置了一系列的大功率卤素灯泡放置于静电纺喷头与接收器之间,光照范围设置在喷头与接受装置之间最后1/3段。在光照过程中,通过空气循环来保持周围环境温度的恒定。进行细胞种植14 d后,可见三维支架内广泛分布的细胞。该实验证明使用这一创新且简单的设置,能够获得三维结构的静电纺丝支架。除了对纳米纤维加热的方法,2006年,有学者认为冷冻法也能对单根纳米纤维形成中的孔隙有影响,McCann等[24]使纳米纤维在形成和接收过程中接受液氮的凝固作用,使纳米纤维纺丝射流急速冷冻分为溶质和溶剂两相。通过控制单根纤维内的溶剂挥发速度,从而形成单根纤维内的疏松多孔结构。 Rnjak-Kovaci等[25]通过提高静电纺喷头的流速制作出纤维直径和平均孔隙更大的支架。高孔隙率支架拥有更高的拉伸力,无论高低孔隙直径的支架都能支持成纤维细胞的早期附着、铺展和扩增,但只有高孔隙支架支持活跃的细胞迁移和渗透。 迄今为止,大多数的纳米纤维支架表现为传统的两维膜片状,限制了组织工程的深入应用。另一方面,传统细针静电纺的低产严重限制了其商业化。Li等[26]使用了一种盘状的静电纺发射器制备出新型支架材料。与传统细针静电纺制备的聚乳酸纳米纤维膜相比,新型支架材料对细胞的迁移有促进作用,细胞可渗透进入800 μm。体外实验结果显示盘状静电纺聚乳酸纤维支架能够为软组织的再生提供三维支撑结构。 2.2.2 纤维接收环节干预 Vaquette等[27]研究了具有不同孔洞形状的静电纺接收器对增强细胞渗透的影响。与对照组相比,可以发现模型内的纳米纤维膜有更大的孔径。在支架表面种植小鼠3T3成纤维细胞后,细胞可以在支架内部250 µm处生长,而对照组只能渗透进入30 µm;在低纤维密度区域,孔径直径增加10倍以上。之后Vaquette等[28]又使用热诱导相分离技术结合静电纺技术,制作出具有三维结构、多层次的生物支架,能够使细胞从边缘渗透进入支架内部。Hong等[9]也介绍了一种新型纺丝接收板的电喷技术,制作出超薄层的微米和纳米纤维膜。由于减小了厚度,每一层的孔径大小可达到60 µm左右,促进了细胞进入薄层纤维膜的孔径内。之后作者使用三明治法将种植有成纤维细胞的单层纤维膜重复叠加组合,形成了具有三维结构的复层细胞-支架复合物。 Zhu等[29]使用一个可调节转速的框架滚桶接收纳米纤维,制备出厚度为250-300 µm的纳米纤维膜,纳米纤维膜的孔隙率可达到92.4%,平均孔隙直径为132.7 µm。成纤维细胞培养5 d后可渗透进入支架达到100 µm。 在2007年首创性使用冰晶作为纳米纤维的接收平面,该研究最早是由Simonet等[30]报道,但由于落后的干燥方法以及室温对冰晶的影响,所增大的孔径直径与传统方法没有明显差别。而该方法由Leong等[31]进行改良,同样使用冰晶作为接收器制作出孔隙相互连接的新型静电纺支架。纳米纤维结构高度模拟细胞外基质的生理环境,孔径可达500 µm。通过控制电纺过程中的环境湿度,能够精确地控制孔径直径等特性。作者通过体外和体内研究证实与传统静电纺支架比较,前者能明显提高细胞的渗透率和支架的血管化,细胞渗透深度达50 µm。 液体接收表面对静电纺支架的孔隙率提高具有一定的效果。有学者利用液体接收器使静电纺纳米纤维漂浮于水面,之后纤维束可随水流漩涡收集于容器内,形成具有疏松结构的纳米纱,该技术也是一种制备三维生物支架的有效方式[32]。Wu等[33]将猪髋内皮细胞和成骨细胞培养于纳米纱支架,较传统纳米纤维膜显示出明显提高的扩增速率。细胞种植后10 d,组织学检测可见细胞已全部渗透入纳米纱支架,而纳米纤维膜没有细胞渗入。在制作纳米纱过程中可通过控制水浴溶剂来改变纤维的密度及孔隙率[34]。使用水纺技术制备的纳米纱材料已被应用于组织工程肌腱的构建,在促进肌腱细胞长入支架内部的同时,保证材料在平行方向上所需的机械强度[35]。 2.3 电纺后修饰 2.3.1 光学修饰 激光具有广阔的应用面,已被应用于组织工程支架的电纺后处理。通过高能量激光对聚合物的加热、溶解和蒸发作用,原本排列致密的纳米纤维膜可形成不同大小的空腔,从而利于细胞和营养物质的渗透。Joshi等[36]使用激光在静电纺纤维支架切割出孔洞,保证了孔径大小的统一性,并且该方法易于操作,大小可控,能够促进细胞渗透和血管长入,使静电纺支架在组织工程中的应用性明显提高。 Lee等[37]采用飞秒激光系统在纳米纤维支架上进行切割,制作纳米级的孔径。细胞种植于激光处理后的支架后表现出不同的形态,但与对照组支架相比较,具有相似的扩增速率。此外,其动物实验表明激光打孔的支架能够促进内皮细胞长入和其他各种细胞渗透。Rebollar等[38]分析了激光的不同脉冲能量、脉冲长度和脉冲数量对静电纺纤维支架的形态影响,结果显示使用激光能够形成一定大小的微孔,并且保留纤维原本的特性。然而不可否认的是,使用激光制作具有微结构的支架存在一些缺点,包括微孔之间的不连续性不能保证细胞之间的信号传递和分子交换,以及激光烧灼对支架原有连续纤维的破坏,降低了机械强度。Joshi等[36]将激光打孔技术制备的聚乙酸内酯静电纺支架置入大鼠的网膜内,2周后观察细胞的渗透和血管化情况。结果显示,300 µm孔径大小的支架较160 µm和80 µm孔径支架有更明显的细胞渗透和血管化。 近几年,Yixiang等[39]学者发现使用常规剂量的紫外线灭菌时会引起聚乳酸聚乙醇酸共聚物和聚乳酸已内酯纤维的明显损伤,表现为分子质量和力学强度的降低,因此需要注意使用紫外线灭菌时这一副反应。然而,作者利用紫外线对纳米纤维的这一作用特点,结合固定孔隙挡板的屏蔽,制作出具有三维结构静电纺纳米纤维支架,促进了细胞的渗透。该方法较激光加热法更加安全、便捷。 2.3.2 其他方法 在电纺后修饰的其他领域,有作者使用电纺后的机械牵拉制作出5 mm厚度的PLLA微米纤维三维支架,与未牵拉的二维支架相比具有更高的成骨细胞扩增速率,可见到细胞渗透入支架底层[40]。 Lee等[41]使用超声波对三维支架进行裂解,使其孔径大小、孔隙率和厚度得到明显增加。支架的以上3个特征大小取决于超声波的强度和超声处理的时间。其原理在于超声波的振动使纳米纤维之间相互分离。作者对超声裂解条件进行优化,制作出了高孔径率的3D支架。体外实验证实使用该方法作用后的三维支架能够增加细胞的渗透和扩增,成纤维细胞可渗透生长如支架内部300 µm处。该方法的缺点在于超声作用后的支架力学强度有一定程度下降。 Cheng等[42]报道使用中性氩分子或Ar-NH3/H2浆液处理聚乳酸静电纺支架,通过原子力显微镜和X射线光电子能谱来测试支架表面的化学改变。检测结果显示通过两种浆液的处理,支架的亲水性明显增强,而不会影响纤维的强度和纤维结构的完整。体外实验中,猪髋内皮细胞和猪平滑肌细胞的铺展速率加快,更为明显的是氩分子浆液处理的支架对细胞生长速率有更强的促进作用。 在使用致密纳米纤维膜构造三维结构细胞-支架复合物的研究中,有学者在细胞种植方面进行干预,如Chong等[43]通过将成纤维细胞培养于纳米纤维支架的两面促进细胞的渗透。He等[44]使用三明治法将种植有软骨细胞的多层纳米纤维膜复合,成功地构造出气管软骨组织。但这种方法不可避免地阻挡了新建组织内部细胞和养分的交换,不利于毛细血管的再生。"
[1] Sun B,Long YZ,Zhang HD,et al.Advances in three- dimensional nanofibrous macrostructures via electrospinning. Prog PolymSci.2014;39(5):862-890. [2] Gupta D,Venugopal J,Mitra S,et al.Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials.2009;30(11):2085-2094. [3] Liu X,Liu S, Liu S, et al.Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. J Biomed Mater Res B Appl Biomater. 2014;102(7):1407-1414. [4] Zhao S,Xie X,Pan G,et al.Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes.J Surg Res.2014. pii: S0022-4804(14) 00786-0. doi: 10.1016/j.jss.2014.08.019. [Epub ahead of print] [5] Norouzi M, Shabani I,Ahvaz HH,et al.PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. J Biomed Mater Res A.2014.doi: 10.1002/jbm.a.35355. [Epub ahead of print] [6] Dai X, Huang YC.Electrospun fibrous scaffolds of Poly (glycerol-dodecanedioate) for engineering neural tissues from mouse embryonic stem cells.J Vis Exp.2014;(88).doi: 10.3791/51587. [7] Wei G,Li C,Fu Q,et al.Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol. 2014.[Epub ahead of print] [8] Sill TJ,von Recum HA.Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13): 1989-2006. [9] Hong JK,Madihally SV.Three-dimensional scaffold of electrosprayed fibers with large pore size for tissue regeneration. Acta Biomater.2010;6(12):4734-4742. [10] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27): 5474-5491. [11] Bergmeister H,Schreiber C,Grasl C,et al.Healing characteristics of electrospun polyurethane grafts with various porosities.Acta Biomater.2013;9(4):6032-6040. [12] Chiu JB, Liu C, Hsiao BS,et al.Functionalization of poly (L-lactide) nanofibrous scaffolds with bioactive collagen molecules.J Biomed Mater Res A.2007;83(4): 1117-1127. [13] Stankus JJ, Soletti L, Fujimoto K,et al.Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization.Biomaterials. 2007;28: 2738-2746. [14] Phipps MC,Clem WC,Grunda JM,et al.Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.Biomaterials.2012;33(2):524-534. [15] Wang K,Zhu M,Li T,et al.Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts. J Biomed Nanotechnol.2014;10(8): 1588-1598. [16] Kim TG,Chung HJ,Park TG.Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater.2008;4(6):1611-1619. [17] Wang YZ,Wang BC,WangGX,et al.A novel method for preparing electrospun fibers with nano-/micro-scale porous structures.Polym Bull.2008;63(2):259-265. [18] Pham QP, Sharma U, Mikos AG.Electrospun poly (epsilon-caprolactone) microfiber and multilayer nanofiber/ microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10): 2796-2805. [19] Thorvaldsson A,Stenhamre H,Gatenholm P,et al. Electrospinning of highly porous scaffolds for cartilage regeneration.Biomacromolecules.2008;9(3):1044-1049. [20] Park SH,Kim TG, Kim HC,et al.Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.Acta Biomater.2008;4(5):1198-1207. [21] Yang C,Deng G,Chen W,et al.A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids Surf B Biointerfaces. 2014;122:270-276. [22] Jin G,Lee S,Kim SH,et al.Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.Biomed Microdevices. 2014;16(6):793-804. [23] Shabani I,Haddadi-Asl V,Seyedjafari E,et al.Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique.Biochem Biophys Res Commun.2012;423(1): 50-54. [24] McCann JT,Marquez M,Xia YN.Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc. 2006; 128(5):1436-1437. [25] Rnjak-Kovacina J,Wise SG,Li Z,et al.Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials. 2011;32(28): 6729-6736. [26] Li D,Wu T,He N,et al.Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration.Colloids Surf B Biointerfaces. 2014;121:432-443. [27] Vaquette C,Cooper-White JJ.Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater.2011;7(6): 2544-2557. [28] Vaquette C,Cooper-White JJ.A simple method for fabricating 3-D multilayered composite scaffolds. Acta Biomater. 2013; 9(1):4599-4608. [29] Zhu X,Cui W, Li X,et al.Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules.2008;9(7):1795-1801. [30] Simonet M,Schneider OD,Neuenschwander P,et al.Ultraporous 3D polymer meshes by low temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci.2007;47(12):2020-2026,2007. [31] Leong MF,Rasheed M,Lim TC,et al.In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique.J Biomed Mater Res A. 2009;91(1): 231-240. [32] Teo WE, Gopal R,Ramaseshan R,et al. A dynamic liquid support system for continuous electrospun yarnfabrication. Polymer.2007;48:3400-3405. [33] Wu J,Huang C,Liu W,et al.Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning.JBiomedNanotechnol. 2014;10(4): 603-614. [34] Bhardwaj N,Kundu SC.Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett.2009;63(9-10):754-756. [35] Xu Y,Wu J,Wang H,et al.Fabrication of electrospun poly(L-lactide-co-epsilon-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods.2013;19(12):925-936. [36] Joshi VS,Lei NY,Walthers CM,et al.Macroporosity enhances vascularization of electrospun scaffolds.J Surg Res. 2013; 183(1):8-26. [37] Lee BL,eJeon H, Wang A,et al.Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds.Acta Biomater.2012;8(7):2648-2658. [38] Rebollar E,Cordero D,Martins A,et al.Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation.Appl Surf Sci.2011;257(9):4091-4095. [39] Yixiang D,Yong T,Liao S,et al.Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering. Tissue Eng Part A.2008;14(8):1321-1329. [40] Shim IK, Jung MR, Kim KH,et al.Novel three-dimensional scaffolds of poly(L-lactic acid) microfibersusing electrospinning and mechanical expansion: fabrication and bone regeneration.J Biomed Mater Res B Appl Biomater. 2010;95:150-160. [41] Lee JB,Jeong SI, Bae MS,et al.Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A.2011;17(21-22):2695-2702. [42] Cheng Q,Lee BL,Komvopoulos K,et al.Plasma surface chemical treatment of electrospun poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration. Tissue Eng Part A.2013;19(9-10):1188-1198. [43] Chong EJ,Phan TT, Lim IJ,et al.Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution.Acta Biomater. 2007;3(3): 321-330. [44] He X,Fu W,Feng B,et al.Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering.J Nanosci Nanotechnol. 2013;13(6): 3818-3825. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||