Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (14): 2290-2296.doi: 10.3969/j.issn.2095-4344.2014.14.025
Lin Tong-xiang1, 2, Cai Huan-huan1, Lin Yi1
Received:
2014-01-21
Online:
2014-04-02
Published:
2014-04-02
Contact:
Lin Yi, Attending physician, Stem Cell Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
About author:
Lin Tong-xiang, Ph.D., Professor, Doctoral supervisor, Stem Cell Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Department of Developmental Biology, School of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
Supported by:
General Project of National Natural Science Foundation of China, No. 31271595; Project of Human Resources Development in Fujian Province, Fujian Provincial Civil Service Bureau, No. 090700002; Fujian Agriculture and Forestry University R&D Platform Project, No. ptjh12015
CLC Number:
Lin Tong-xiang, Cai Huan-huan, Lin Yi. Issues about definitions of stem cells[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(14): 2290-2296.
1 问题探讨 Problems 问题1:一个中文词语对应两个不同的英文单词,它们的概念相同吗? 两个英文单词“Pluripotent”和“Multipotent”是完全不同的两个概念:查美国国立卫生研究院(NIH)网站http://stemcells.nih.gov/info/pages/glossary.aspx:Pluripotent-The state of a single cell that is capable of differentiating into all tissues of an organism, but not alone capable of sustaining full organismal development. Scientists demonstrate pluripotency by providing evidence of stable developmental potential, even after prolonged culture,to form derivatives of all three embryonic teratoma after injection into an immunosuppressed mouse. Pluripotent:一种单细胞状态,能够分化为身体的各种组织,但不足以单独发育成完整的个体。证明Pluripotent的证据,是通过提供稳定发育潜力,即使经过了长时间的培养之后,通过将这些细胞注射到免疫抑制小鼠之后,也能获得畸胎瘤而形成所有3个胚层[6]。Multipotent-Having the ability to develop into more than one cell type of the body. Multipotent:具有发育成一种以上身体细胞的能力。 从上述定义知道,Pluripotent干细胞比Multipotent干细胞要有更多的潜能,更重要的是Pluripotent干细胞具有分化成畸胎瘤的能力,而Multipotent干细胞却不能。对于中文“多能干细胞”可能表示较低水平的具有分化成一个以上成体细胞潜力的干细胞,Multipotent干细胞也可能表示具有分化为所有成体细胞潜力的高水平的干细胞,即Pluripotent干细胞。混乱的定义给干细胞研究和应用造成严重困惑。 问题2:胚胎干细胞和iPSC为Pluripotent Stem Cell,能叫做Multipotent Stem Cell吗? 胚胎干细胞是从胚泡(由50-100个细胞组成的早期胚胎)未分化的内部细胞团中得到的干细胞[7],是所有身体细胞最初期的形态,能分化出成体动物的所有组织和器官,包括生殖细胞[8]。由于它可以发育成为身体内200多种细胞类型,似乎不宜再称为“多能干细胞”,为了与Multipotent干细胞相区别,也体现其更高的多能性,建议称为“万能性(Universal Kaleidoscope)干细胞。作者曾经在2011年的国家自然科学基金申请书中用“万能干细胞”这个词汇,最近也偶然看到一些网络文章用这个词,体现了作者的所见与一些同行专家的相同,但是还没有出现在更多的出版物上。干细胞”或者“万能干细胞”,意味着通用的几乎无所不能的万花筒似的 对照NIH的定义:Embryonic stem cells-Primitive (undifferentiated) cells that are derived from preimplantation-stage, embryos,are capable of dividing without differentiating for a prolonged period in culture,and are known to develop into cells and tissues of the three primary germ layers。胚胎干细胞:原始的(未分化的)细胞,来源于着床前胚胎细胞,在没有分化时可以在体外培养较长的时间,并可以发育成各种细胞和3个胚层的组织。 2006年Yamanaka等提出成体细胞诱导胚胎干细胞类似的细胞类型,命名为Induced pluripotent stem cell (iPSC),为干细胞研究领域带来了巨大的进步。对此,NIH定义:Induced pluripotent stem cell (iPSC)-A type of pluripotent stem cell, similar to an embryonic stem cell,formed by the introduction of certain embryonic genes into a somatic cell. 诱导万能干细胞是一种Pluropotent干细胞,类似于胚胎干细胞,通过在成体细胞中引入一定的胚胎干细胞基因而形成的。胚胎干细胞和诱导万能干细胞均具有分化为身体所有细胞的潜力,因此常常统称胚胎干细胞和诱导万能干细胞为Pluripotent干细胞。 早期的诱导万能干细胞研究发现它们具有分化为畸胎瘤或者嵌合体的能力,但是不能证明具有形成胚外组织(如胎盘)的细胞[9]。在2009年,中国的周琪和曾一凡实验室证明,诱导万能干细胞也具有最高潜力,全能性,即具有产生人体的所有细胞类型和构成的胚外组织(如胎盘)能力[10]。正如NIH所定义的全能干细胞:Totipotent-Having the ability to give rise to all the cell types of the body plus all of the cell types that make up the extraembryonic tissues such as the placenta. 因此,诱导万能干细胞或者胚胎干细胞在某种情况下,不仅是万能干细胞,也是全能干细胞。 此外,更早一些的研究发现,可以将动物成体细胞重编程为干细胞,方法是将体细胞细胞核以显微注射或电击的方法注入去核的卵细胞中,再将其继续培养到囊胚期[11-12]。采用这些方法也可以得到Pluripotent stem Cell,甚至Totipotent Stem Cell,Dolly 的成功就是证明[13]。然而细胞核移植的方法相对困难,人类细胞核移植获得干细胞,至今没有成功的报道。 全能干细胞(Totipotent):由卵子和精子的融合产生受精卵后,受精卵分裂,而受精卵在形成胚胎过程中八细胞期之前任一细胞皆是全能干细胞[14]。全能干细胞具有发展成独立个体的能力,也就是说能发展成整个生物个体的细胞就称为全能干细胞。具有形成完整个体的分化潜能,受精卵就是这样的最高层次的干细胞。Totipotent干细胞经过早期分化,结果失去部分分化潜力,形成Pluripotent干细胞,它无法单独发育成个体,但可以借助畸胎瘤或者嵌合体,具有可以发育为所有成体细胞的能力。更多的分化结果,形成Multipotent干细胞,失去更多的分化潜力,但它还具有分化出多种细胞组织的潜能,如造血干细胞,能分化为多种血细胞类型[15-16]。 问题3:什么是成体干细胞(adult stem cell)? 成体干细胞:Adult ( Somatic ) stem cells(ASC, NIH定义)-A relatively rare undifferentiated cell found in many organs and differentiated tissues with a limited capacity for both self renewal (in the laboratory) and differentiation. Such cells vary in their differentiation capacity, but it is usually limited to cell types in the organ of origin. Stem cells-Cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells. 成体(成人)干细胞是在许多器官和分化组织中相对稀少的未分化的细胞,具有有限的自我更新能力(实验室)和分化能力。这些细胞的分化能力各不相同,但它通常受限于器官来源的细胞类型。 根据上述定义,成体干细胞存在于成体特定的组织中,具有自我复制能力的,并且能分化成具特定功能细胞能力的,例如:骨髓干细胞、造血干细胞、神经干细胞[17]。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的成体细胞,从而使组织和器官保持生长和衰退的动态平衡。成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力,正是成体干细胞在其中起着关键的作用[18]。过去认为干细胞主要包括上皮干细胞和造血干细胞,而最近研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,目前的这些研究说明干细胞普遍存在[19]。问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化[20]。下面分述常见的成体干细胞: 造血干细胞:Hematopoietic stem cell(NIH定义)- A stem cell that gives rise to all red and white blood cells and platelets. 造血干细胞-(能分化)产生所有的红细胞、白细胞和血小板。造血干细胞在骨髓中发现并分化成为所有的血细胞类型。造血干细胞是体内各种血细胞的来源,它主要存在于骨髓、外周血、脐血中。造血干细胞移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病最有效的方法,包括,骨髓移植、外周血干细胞移植、脐血干细胞移植等[21-22]。 间充质干细胞:Mesenchymal stem cells(MSC, NIH定义)-A term that is currently used to define non-blood adult stem cells from a variety of tissues, although it is not clear that mesenchymal stem cells from different tissues are the same. 间充质干细胞(MSCs)是目前用于定义非血的各种成人干细胞,虽然并不明确不同组织间充质干细胞是否相同。间充质干细胞来源于骨髓基质;也来源于其他组织,已经从脂肪组织、胎盘、肺、骨髓、脐带等中分离到间充质干细胞[23]。骨髓间充质干细胞可以分化成各种组织,基于此其临床治疗是有吸引力的,它将提供营养支持且调节先天免疫反应[24-25]。骨髓基质干细胞能够形成骨、软骨等,支持造血、脂肪、纤维组织。脐血干细胞(Umbilical cord blood stem cells)可在新生儿出生时收集到,这些细胞可以产生所有的血细胞,具有造血干细胞特点,脐血是目前用于治疗因癌症或其他疾患的造血与骨髓相同的重要来源,这些患者因为接受化疗而摧毁了他们自己的造血系统[26]。 神经干细胞:Neural stem cell(NSC,NIH定义)-A stem cell found in adult neural tissue that can give rise to neurons and glial (supporting) cells. Examples of glial cells include astrocytes and oligodendrocytes. 神经干细胞能分化产生神经元和胶质(支持)细胞,如星型胶质和少突胶质细胞。神经干细胞存在于成人大脑,据认为能产生新神经元。已被证明,新的神经元细胞存在于成年小鼠、禽和灵长类动物,也包括人类。一般情况下,成年神经发生被限制在大脑的C脑室下区两个区域、侧脑室,以及海马齿状回。虽然海马产生新的神经元是公认的,真正的能自我更新的干细胞是否存在一直是人们争论焦点。在某些情况下,如在缺血后的组织损伤,神经可以在大脑的其他区域产生,包括新皮质。通常在体外培养的神经球,也就是所谓的浮动聚集细胞团,含有大量的神经干细胞。它们可以分化为神经元和神经胶质细胞,因此表现为干细胞特性[27-28]。然而,一些研究表明,这种行为是由祖细胞的体外培养条件诱导而来的,后代干细胞的分裂通常在体内受到严格限制,包括数量和复制周期。此外,神经干细胞移植到脑不表现为干细胞。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在,使之在干细胞移植到中枢神经系统后,不会产生免疫排斥反应,可治愈部分患者症状。例如,给帕金森综合征患者的脑内移植神经干细胞,这些干细胞能分化为多巴胺神经元细胞,多巴胺神经元细胞能分泌多巴胺[29]。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、检测毒性有一定的作用[30]。 乳腺干细胞:乳腺干细胞是青春期和妊娠期乳腺生长细胞的来源,并且它在乳腺癌的发生中起着重要的作用。乳腺干细胞已被分离,分别来自人类和小鼠组织,以及来自乳腺的细胞系。这种单细胞可以产生两个管腔和肌上皮细胞的腺细胞类型,已被证明具有在再生小鼠整个器官的能力[31]。 肠干细胞:肠干细胞在整个生命过程中不断分裂,且使用一个复杂的遗传程序,产生小肠和大肠表面细胞。肠干细胞在干细胞小生境的基部称为肠腺的位置。肠干细胞可能是的小肠和结肠癌症最早来源[32]。 生殖干细胞:研究发现来自精原干细胞的小鼠睾丸细胞具有多能性干细胞的特性,等效于胚胎干细胞。同样的,干细胞也从人类睾丸细胞分离得到,提取的干细胞被称为人成年生殖干细胞[33]。 成体干细胞的种类比较复杂。上述分类是基于组织来源的分类方法。此外,一些分类还基于其多能性的不同程度将成体干细胞分类为多能干细胞、寡能干细胞(Oligopotent stem cell)、单能干细胞(Unipotent stem cell)等[17]。但是后两类干细胞还没有被广泛接受,一些资料认为这些细胞并不具有无限自我复制能力,不能称为干细胞,仅仅是祖细胞(Progenitor Cell)。这些名称偶然见于一些资料[34]。实际上,到目前为止,人们对干细胞的了解仍存在许多盲区,特别是对于成体干细胞的研究还刚刚开始。随着研究工作向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪生命科学对于人类的健康长寿不断创造奇迹,干细胞的应用将拥有更广阔的前景。 问题4:与肿瘤干细胞有区别吗? 正如上述,鉴定Pluripotent干细胞的实验采用畸胎瘤实验技术。Multipotent 干细胞不能形成畸胎瘤,而Pluripotent干细胞具有形成畸胎瘤的潜力,这是两者的区别,这个性质也决定了它们各自不同的应用。由于胚胎干细胞和诱导万能干细胞的畸胎瘤特性,在细胞治疗中不能直接应用,必须适当的定向分化成为目标细胞,而在目标细胞中如果存在这些未完全分化的细胞,则必须除去,以免引起肿瘤等不利效果[25]。 畸胎瘤:Teratoma(NIH定义)-A multi-layered benign tumor that grows from pluripotent cells injected into mice with a dysfunctional immune system. Scientists test whether they have established a human embryonic stem cell (hESC) line by injecting putative stem cells into such mice and verifying that the resulting teratomas contain cells derived from all three embryonic germ layers. 良性畸胎瘤是万能干细胞注射到免疫功能障碍小鼠体内产生的一种多层良性肿瘤。通过注射干细胞到小鼠体内和验证所产生的畸胎瘤含有3个胚层细胞,测试他们是否已经建立了一个人类胚胎干细胞系[26]。 肿瘤干细胞:对于畸胎瘤,根据癌症分期系统将畸胎瘤进行分类,但是分类与瘤子在人体中的位置无关。其程度大小,表明除了需要手术,是否还需要化疗或放疗。畸胎瘤通常使用Gonzalez-Crussi分级系统进行分类[35]:0或成熟,表明瘤子是良性的;1或不成熟,瘤子可能也是良性的;2或不成熟,瘤子可能是恶性(癌);3或明显恶性。如果发现是明显恶性肿瘤,还进一步将按照癌症分期分类。畸胎瘤也可以按照内容进行分类:固体畸胎瘤包含组织(可能包括更复杂的结构);囊性畸胎瘤包含流体或半流体,如脑脊液、皮脂或脂肪;混合畸胎瘤包含囊性和实性两个部分。囊性畸胎瘤通常是0年,反之0级通常也就是囊性畸胎瘤。0级,1和2的纯畸胎瘤有成为恶性肿瘤(3级)的潜力。畸胎瘤恶变包含基本的成体细胞恶性肿瘤,如白血病、癌或肉瘤[36]。畸胎瘤也可能含生殖细胞肿瘤,一种含有生殖细胞的混合恶性肿瘤。畸胎瘤也许是良性的也可能是恶性的,化疗消除混合瘤恶性元素,留下的纯畸胎瘤将开始迅速生长,而具有高度攻击性。 目前多数研究人员认为,肿瘤干细胞是指移植进免疫缺陷动物体内能形成肿瘤并具有自我更新和一定分化能力的细胞[37];新的理论认为肿瘤干细胞在癌细胞中广泛存在,是各种癌症产生的根源。2001年Reya等[38]首次明确提出了比较完整的肿瘤干细胞学说,认为在肿瘤组织中存在少数具有干细胞性质的细胞群体,这些细胞具有自我更新能力和多向分化潜能,被称为肿瘤干细胞。2006年美国癌症研究协会(AACR)将肿瘤干细胞定义为:肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的细胞[39]。肿瘤干细胞正常干细胞相比有很多共同的特征:①自我更新能力和分化潜能,实现定向或不定向的分化[40]。②相似的生长调控机制,都存在Wnt、Bmi-1、Notch等信号调节通路[41]。③端粒酶活性,都具有很高的端粒酶活性以及扩增的端粒重复序列[42]。④均存在两种分裂方式,即对称分裂和不对称分裂,通过对称分裂实现自我复制,通过不对称分裂,分化成其他类型的细胞[43-44]。肿瘤干细胞除了具有干细胞的一般特征之外,还有以下特点:①通过对称分裂保持肿瘤干细胞类群的稳定性,通过不对称分裂分化形成特定的肿瘤组织,并保持自我分化的平衡性[45-46]。②抗辐射能力强,通过激活抗凋亡机制、增强DNA的修复能力及增加细胞膜泵外排的功能,使肿瘤干细胞具有很强的生命力,难以在体内被彻底清除[47]。③转移能力强,可以在体内发生迁移,导致癌症的复发[48]。④高度的致瘤性,移植到NOD/SCID小鼠体内,即使数目极其稀少,成瘤能力也比普通癌症细胞大数百倍以上,被认为是肿瘤发生、发展与维持的基础[49]。⑤耐药性,肿瘤干细胞膜上多数可表达ATP-binding cassette (ABC) 亚家族G2-ATP酶转运蛋白,可以运输并外排代谢产物、多肽、核苷酸、固醇类、内源性脂类物质、毒性物质、药物等多种物质,使肿瘤干细胞对许多化疗药物产生耐药性[50]。因此目前认为肿瘤干细胞的存在是导致癌症化疗失败的主要原因之一。 从上述畸胎瘤和和恶性畸胎瘤的分析中,可以发现,畸胎瘤大多是良性的,但是也可能发展为畸胎癌等恶性肿瘤。显然,畸胎瘤是从胚胎干细胞等自我复制和分化潜力的干细胞而来的。由此认为,畸胎癌等恶性肿瘤也可能有其核心细胞,即肿瘤干细胞。人们在iPSC的概念出现之前就发现癌症与干细胞息息相关。虽然肿瘤起源尚未明确,但是我们和其他一些实验和临床转移性癌细胞的行为是典型的干细胞特性,极易让人联想到Pluripotent的干细胞特性。实际上,2004年底在《Nature Cell Biology》杂志上刊发了胚胎干细胞在p53基因突变情况下停止分化或者逆转分化方向机制的研究成果[3]。到2006年底,Yamanaka等发表了由成体细胞逆转分化成功研制人造的(诱导的)命名为诱导万能干细胞的论文。2009年,Yamanaka等多个研究小组在Nature杂志发表5篇论文,证明这个逆转分化的最重要因子是p53[51-55]。而p53正是本文作者及其他研究伙伴们在2004年底发现的同一个基因, 也是他们多年以来一直在研究的抑制癌症的最关键基因p53。他们发现,在iPSC诱导过程中,需要4个因子Oct4、Sox2、cMyc和Klf4的共同参与,但效率相当低,一般只有0.01%(人类iPSC)或者0.1%(小鼠iPSC)。而p53的缺失可以使iPSC诱导效率极大地提高,达到20%左右,这比4个因子中的任何一个都更有效,甚至至少可以代替cMyc 和Klf4两个因子。因此,在iPSC的诱导过程中,p53的缺失是必不可少的,p53才是iPSC的关键限制因素。 2005年干细胞自我调控的首次发现,干细胞通过激活p53蛋白,抑制胚胎干细胞关键转录因子Nanog,促进干细胞分化,从而维持干细胞基因组的稳定性[56];如果p53功能缺失,干细胞控制功能将不复存在,干细胞会失去分化能力,细胞可能逆转分化方向,这可能是导致肿瘤干细胞,并最终导致癌症的重要机制之一。而且,目前的研究发现,50%的癌症细胞中存在p53基因突变,而剩下不存在p53基因突变的癌症细胞则是不表达p53蛋白或者是虽然表达p53蛋白但是没有正常功能。"
[1] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391): 1145-1147. [2] Shamlott MJ, Axelwan J, Wang S. Derivation of pluripotent stem cell from ultured human primordial germ cell. Proc Natl Acad Sci USA. 1998;95: 13726-13731. [3] Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biolo. 2004;7(2): 165-171. [4] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4): 663-676. [5] Laywell ED, Rakic P, Kukekov VG, et al. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A. 2000;97(25): 13883-13888. [6] http://stemcells.nih.gov/info/pages/glossary.aspx [7] Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92(17):7844-7848. [8] Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol. 1995;7(6):862-869. [9] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858): 1917-1920. [10] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5): 381. [11] Illmensee K, Hoppe PC. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell. 1981;23(1): 9-18. [12] McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science. 1983; 220(4603): 1300-1302. [13] Campbell KHS, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996; 380 (6569): 64-66. [14] McKay R. Stem cells hype and hope. Nature. 2000;406(6794): 361-364. [15] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737. [16] Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960): 836-841. [17] Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5): 639-648. [18] Vogel G.. Can adult stem cells suffice. Science. 2001; 292 (5523):1820. [19] Alison MR, Islam S. Attributes of adult stem cells. J Pathol. 2009;217(2): 144-160. [20] Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656): 359. [21] Baum CM, Weissman IL, Tsukamoto AS, et al. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7): 2804-2808. [22] Gunsilius E, Gastl G, Petzer AL. Hematopoietic stem cells. Biomed Pharmacother. 2001;55(4):186-194. [23] Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5): 641-650. [24] Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6): 507-520. [25] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411): 143-147. [26] Rogers I, Casper RF. Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):893-908. [27] Johansson CB, Momma S, Clarke DL, et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999;96(1): 25-34. [28] Kennea NL, Mehmet H. Neural stem cells. J Pathol. 2002; 197(4):536-550. [29] Redmond DE Jr, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007;104(29):12175-12180. [30] Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med. 2004;10 Suppl:S42-50. [31] Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84-88. [32] van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241-60. [33] Johnson J, Canning J, Kaneko T, et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145-150. [34] Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287 (5457): 1442-1446. [35] Newton WA Jr, Gehan EA, Webber BL, et al. Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification‐an intergroup rhabdomyosarcoma study. Cancer. 1995;76(6):1073-1085. [36] Logothetis CJ, Samuels ML, Trindade A, et al. The growing teratoma syndrome. Cancer. 1982; 50(8): 1629-1635. [37] Bomken S, Fišer K, Heidenreich O, et al. Understanding the cancer stem cell. Br J Cancer. 2010;103(4):439-445. [38] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859): 105-111. [39] Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006; 66(19): 9339-9344. [40] Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34): 4741-4751. [41] Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003; 423(6937): 255-260. [42] Ju Z, Rudolph KL. Telomeres and telomerase in cancer stem cells. Eur J Cancer. 2006;42(9):1197-1203. [43] Boman BM, Wicha MS, Fields JZ, et al. Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin Pharmacol Ther. 2007;81(6):893-898. [44] Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441(7097): 1068-1074. [45] Boman BM, Wicha MS. Cancer stem cells: a step toward the cure. J Clin Oncol. 2008;26(17):2795-1799. [46] Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 2011;223(2): 148-162. [47] Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4): 275-284. [48] Bernards R, Weinberg RA. Metastasis genes: a progression puzzle. Nature. 2002;418(6900): 823-823. [49] Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124(6): 1111-1115. [50] Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14(1): 3-9. [51] Hong H, Takahashi K, Ichisaka T, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460(7259):1132-1135. [52] Marión RM, Strati K, Li H, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009;460(7259):1149-1153. [53] Kawamura T, Suzuki J, Wang YV, et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009;460(7259):1140-1144. [54] Utikal J, Polo JM, Stadtfeld M, et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009;460(7259):1145-1148. [55] Krizhanovsky V, Lowe SW. Stem cells: The promises and perils of p53. Nature. 2009;460(7259):1085-1086. [56] Xu Y. A new role of p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle. 2005;4(3):363-364. [57] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111. [58] Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol. 2003;21(10):1200-1207. [59] Lou YJ, Liang XG. Embryonic stem cell application in drug discovery. Acta Pharmacol Sin. 2011;32(2):152-159. |
[1] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[2] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[3] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[4] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[5] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[6] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[7] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[8] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[9] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[10] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[11] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[12] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[13] | Guan Qian, Luan Zuo, Ye Dou, Yang Yinxiang, Wang Zhaoyan, Wang Qian, Yao Ruiqin. Morphological changes in human oligodendrocyte progenitor cells during passage [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1045-1049. |
[14] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
[15] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||