Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (3): 446-451.doi: 10.3969/j.issn.2095-4344.2014.03.019
Previous Articles Next Articles
Ni Shuo1, Li Peng1, Zhang Wei-guo2, Li Peng-sheng1, Gui Hao-ran1
Online:
2014-01-15
Published:
2014-01-15
Contact:
Li Peng, M.D., Chief physician, Master’s supervisor, Department of Orthopedic Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning Province, China
About author:
Ni Shuo, Studying for master’s degree, Department of Orthopedic Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning Province, China
Supported by:
the Natural Science Foundation of Liaoning Province, No. 2013023034
CLC Number:
Ni Shuo, Li Peng, Zhang Wei-guo, Li Peng-sheng, Gui Hao-ran. Fabrication technologies of tissue-engineered cartilage scaffolds[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(3): 446-451.
2.1 软骨组织工程支架的要求 理想的组织工程支架应该具有以下10个特征:①良好的生物相容性。②可降解性。③足够的孔隙结构。④能够促进细胞的黏附与增值。⑤具备承载生长因子的能力。⑥支架的容积应能保持不变。⑦支架能与周围组织融为一体。⑧不易从缺损区脱落。⑨具有一定的弹性。⑩具有关节软骨的分层结构[10]。组织工程支架材料作是组织器官工程化的最基本元素。目前用于组织工程支架的材料主要有天然生物材料[11]、人工合成高分子材料和复合材料3大类[12]。单纯应用天然生物材料或人工合成高分子材料存在诸多问题。将两种或两种以上具有互补特性的材料进行复合,并选择合适的制备工艺,可以设计构造出能够满足软骨组织工程所需的三维支架。 2.2 软骨组织工程支架制备方法 软骨组织工程支架作为软骨细胞外基质的替代物,其外形和孔结构对实现其作用和功能具有非常重要的意义。制备工艺的不同对支架的性能可产生明显影响。目前已研究出多种制备软骨组织工程支架的方法,在实际应用中可以根据不同组织和器官选择不同的制备工艺。 2.2.1 相分离/冷冻干燥法 相分离法可分为溶致相分离和热致相分离两种方法。因为许多结晶性聚合物在室温下找不到合适的溶剂,所以溶致相分离方法应用不多。目前应用较多的是将热致相分离法与冷冻干燥法结合起来使用。其原理是将聚合物溶液、乳液或水凝胶在低温下冷冻,诱使混合物在冷冻过程中发生相分离,最后经冷冻干燥除去溶剂而形成多孔泡沫支架。在此方法中支架的内部结构及物理、化学特性由制备过程中的各种条件所决定[13]。Fan等[14]用此法制备的聚丙交酯-乙交酯多孔支架孔隙大小较均一,孔隙间微孔相通,平均孔径为500 μm,微孔直径为5 μm,孔隙率为89.6%。该法由于在制备过程中避免了高温,且不涉及毒性大的有机溶剂,因此有利于生物活性分子,如蛋白质生长因子或分化因子的引入和控制释放。Fan等[14]应用此法制备负载转化生长因子β3的聚丙交酯-乙交酯-明胶/硫酸软骨素/透明质酸支架,种植兔骨髓间充质干细胞28 d后骨髓间充质干细胞在支架上分化为软骨细胞,且能够分泌软骨细胞外基质。邓天政等[15]参考Fan等[14]的制备方法,制备了明胶-硫酸软骨素-透明质酸及明胶-陶瓷化骨软骨复合支架,结果发现兔软骨细胞在复合支架上生长良好。但该方法的不足是其产生的微孔大小难以控制。后,细胞在支架上生长并部分长入支架内; 2.2.2 水凝胶技术 水凝胶是一种富含水分,并且富有弹性的非黏着性亲水性聚合物,水凝胶支架可以很好地运输营养物质及代谢废物[16]。通过一定的化学交联或物理交联,凡是亲水性或水溶性的高分子都可以形成水凝胶。这些高分子按其来源可分为天然和合成两大类:天然的亲水性高分子包括多糖类和多肽类;合成的亲水高分子包括丙烯酸及其衍生物类。水凝胶技术具有可塑性强,易于制成可注射性支架等优点[17],因此具有广阔的应用前景。Hong等[18]用交联的壳聚糖水凝胶复合物与软骨细胞共培养,结果显示软骨细胞在12 d后仍能维持其细胞表型。最近,Yang等[19]将氧化的海藻酸盐作为大分子交联剂制备胶原水凝胶支架,结果显示乳兔关节软骨细胞在交联的胶原水凝胶支架上生长良好,并保持细胞表型。但该技术的不足是所制备的支架强度不高,并且常因吸水而变形,不能很好地促进细胞增殖。 2.2.3 快速成型技术 快速成型技术就是利用三维CAD的数据,通过快速成型机将一层层的材料堆积成实体原型。近几年人们将快速成型技术应用于组织工程支架制备,集合计算机获得更理想的支架结构、孔隙率等重要指标,取得了较好的效果。目前用于组织工程多孔支架制备的快速成型法主要有熔融沉积成型、选择性激光烧结及三维打印3种。 熔融沉积成型:此法通常使用热塑性高分子原料,利用热熔喷头,使得熔融状态的材料按计算机控制的路径挤出、沉积,并凝固成型,经过逐层沉积、凝固,最后除去支撑材料,得到所需的三维产品[20]。该技术特点是成型产品精度高、表面质量好、成型机结构简单、无环境污染等。熔融沉积成型技术所使用的原料通常为聚酰胺、聚酯、聚碳酸酯、聚乙烯、聚丙烯等热缩性高分子。荷兰乌特勒支药学研究所Seyednjad等[21-22]使用苄基保护的羟甲基乙交酯与己内酯共聚,然后再进行苄基脱保护,获得了羟甲基乙交酯与ε-CL 的共聚物,并通过纤维熔体沉积技术制备了3D支架。制备过程中对材料的特殊处理增强了细胞对材料的黏附,促进了人间充质干细胞的存活和增殖,以及成骨分化。南洋理工大学的Cao等[23]利用此方法制备了聚乙酸内酯骨软骨复合支架,并将成骨细胞与软骨细胞种植于同一支架的两部分。两种细胞在支架中分泌出不同的细胞外基质,在成骨细胞种植区出现了较高的骨钙,而软骨细胞种植区测得了较高的碱性磷酸酶。该结果表明,通过此法制备的聚ε-己内酯支架可望应用于骨软骨的修复。但是熔融沉积成型法的不足是操作温度较高,无法应用于天然生物材料的制备。 选择性激光烧结:选择性激光烧结是采用激光束按照计算机指定路径扫描,使工作台上的粉末原料熔融、黏结固化。其方法是逐层扫描黏结,最后获得所需的三维材料。选择性激光烧结技术常用的原料包括塑料、陶瓷、金属粉末等,其优点是加工速度快,且无需使用支撑材料。美国密歇根大学的Das等使用聚ε-己内酯为原料,通过选择性激光烧结技术制备了3D可降解多孔支架,获得的3D支架材料能与动物骨组织良好地结合,且具有良好的生物相容性[24]。但此法的缺陷是成型产品表面较粗糙,且制备过程中持续的高温可能造成高分子材料的降解,以及生物活性分子的变形或细胞的凋亡,所以该技术不能用于制备水凝胶支架[25]。 三维打印技术:三维打印技术目前已用于组织工程多孔支架的制备[26]。其基本制造过程是按照“分层制造、逐层叠加”的原理,根据CT等成像数据,经计算机3D建模转换后,再以特定的格式文件输入到计算机系统中,并分层成二维切片数据,通过计算机控制的3D打印系统进行逐层打印,叠加后最终获得三维产品。Schek等[27]用该方法制造聚乳酸/羟基磷灰石双层软骨与骨复合支架,动物实验发现可在异位同时促进骨和软骨生长。 近年来通过直接携带细胞进行3D打印的细胞或组织打印技术受到了广泛的关注。其优势在于:①直接通过3D打印技术控制细胞在微观尺度的排列分布,对于调节细胞行为、细胞间的相互作用、细胞与材料间的相互作用,以及促进细胞最终形成功能组织具有十分重要的意义。②相比于在已成型的支架中种植细胞,直接携带细胞打印可以获得更高的细胞密度。目前的细胞和组织打印技术主要是基于携带细胞的水凝胶3D沉积技术[28]。美国斯克里普斯研究所的D’Lima等以天然牛股骨髁制成体外软骨缺损模型,以PEGDMA/软骨细胞混合溶液为生物墨水,在紫外光照下,在软骨缺损部位进行原位打印[29]。通过该方法打印成型的聚乙二醇水凝胶支架的物理性能及生物相容性良好,为将来开发能直接应用于体内的原位生物打印技术进行组织缺损原位修复提供了一个重要手段。 2.2.4 静电纺丝法 静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝方法。该方法能使有机大分子简单而可控地形成纳米纤维,制备出较大的面积-体积比和高孔隙率的支架。Li等[30]采用此法制成聚己内酯纳米纤维支架,将骨髓干细胞接种于支架表面,在不同培养环境中分别诱导形成了脂肪组织、软骨组织、骨组织,说明该技术制成的聚己内酯支架可用于多种组织工程构建。为了能使电纺的纤维支架具有生物活性物质缓释功能,研究人员开发出了同轴共纺技术。Jiang等[31]通过同轴共纺技术制备以聚乙内酯为壳,牛血清蛋白为芯的纤维,结果表明牛血清蛋白可以从壳-芯式结构中缓慢释放出来。但该方法制作支架耗时长,因此支架的大批量生产较困难;并且对于较大支架的制备仍有许多技术难题需要克服[32]。 2.2.5 溶剂浇铸/粒子沥滤法 该法由Mikos等[33-34]作为纤维连结法的改进而提出,目前已成功地用于软骨细胞的培养和软骨组织的生成。其原理是先将高分子材料溶解或熔化成液态,然后在液体中加入不溶(或不熔)的所需粒径范围的致孔剂,将该液体混合物固化(待溶剂挥发或降温凝固),最后用高分子材料不溶(或不熔)而致孔颗粒溶解的溶剂将致孔颗粒浸泡沥出,制成不含粒子的多孔隙高分子支架。支架的孔形态、孔隙率、机械性能、生物活性和降解性能可由致孔剂的性质及其数量,不同支架材料的性质及其比例控制。Lee等[35]采用该技术制备了孔隙率为87%-90%,孔径大小在115.5-220.9 μm之间的聚乙二醇水凝胶支架,并在支架上种植软骨细胞,结果发现软骨细胞在微孔内伸展生长,并产生大量的细胞外基质和葡萄糖胺聚糖。能用该法致孔的聚合物有聚乳酸[36]、聚乙醇酸及其共聚物等。 溶剂浇铸/粒子沥滤法的改进:虽然粒子致孔法具有简单、适用性广,并且孔隙率和孔尺寸易独立调节等优点,但该方法也存在诸多局限性[37],例如:支架的厚度不足[38];支架内部连通性的缺陷[39];支架内部致孔剂的残留[40-41];支架制备过程中残留的有毒溶剂对组织生长的影响[40, 42]。为克服上述缺陷,研究者们对溶剂浇铸/粒子沥滤法进行改进或者将溶剂浇铸/粒子沥滤法与其他方法相结合来制备多孔支架。 为解决支架的厚度的问题,国内学者任杰等[43]将通过溶剂浇铸/粒子沥滤法所制得的聚乳酸-聚乙二醇薄层支架,利用层叠方法以氯仿润湿支架的黏结面后,将薄层支架彼此黏合为三维多孔支架。此法虽然比较简单,并且有利于滤除支架中的致孔剂,但其制备过程中无法避免有毒溶剂的使用,且在粘接过程中可能导致支架孔结构破坏。 为克服支架孔-孔连通性不好的缺陷,Shokrolahi等[40]采用致孔剂模板法,以通过处理的球形化氯化钠颗粒为致孔剂,经处理得到孔隙率高、孔-孔连通性好的聚乳酸/羟基磷灰石复合材料支架。尽管通过模板法制备的多孔支架的孔-孔连通性好,但它对致孔剂要求较高,对支架的孔隙率的控制也较为困难,且同样无法避免有毒有机溶剂的使用。 为解决传统无机盐致孔剂在支架上的残留及其毒害性,采用冰粒子作为致孔剂引起了研究者们的注 意[44]。国内东南大学的孙浩[45]以冰粒子作为致孔剂,采用粒子沥滤/冷冻干燥复合工艺制备了具有良好孔隙结构、较大尺寸且无致孔剂残留的三维块状聚(乳酸-羟基乙酸)共聚物多孔支架。采用冰粒子作为致孔剂虽然可有效避免致孔剂的残留,但在实际操作中因能耗问题而困扰着研究者,并且同样无法避免有机溶剂的使用[46]。 为有效避免有毒有机溶剂的使用,Hou等[46]通过模压/粒子沥滤法制备消旋聚乳酸支架,其具体过程是:将所需的聚合物支架材料在低温下冷冻粉碎,然后将所需粒径的颗粒与氯化钠颗粒混合后加入模具,在高温高压下模压成型。此改进方法解决了有毒有机溶剂的残留及支架厚度的问题。但由于此法在制备过程中不可避免的使用高温高压,从而影响了支架材料的性能,并且对于设备及模具有一定要求。 采用溶剂浇铸/粒子沥滤和相分离等方法制备软骨组织工程多孔支架,尽管支架孔隙率高达95%,孔径范围在20-500 μm,但以上多数方法在制备过程中无法避免有机溶剂的使用。如果有机溶剂残留在支架中,则可能伤害移植细胞及邻近组织。而且,许多生物活性因子(如生长因子)在有机溶剂中会失去活性[47]。为此,采用超临界CO2 作为致孔剂的气体发泡法来制备高度多孔可生物降解支架引起了研究者们的关注。 2.2.6 气体发泡法 气体发泡法主要有物理发泡法和化学发泡法,其大致原理是利用不同压力下气体在固体中溶解度的不同,通过压力的改变在聚合物中形成气腔,并最终形成三维多孔支架。聚合物材料的性质及制备过程中的各种因素决定了支架的孔隙率和孔结构。物理发泡法可以避免有机溶剂的使用,但是对于某些材料,如结晶性聚合物,这种方法产生的泡沫结构大多是闭孔结构。例如,利用超临界二氧化碳发泡工艺形成的支架孔径大小不一,孔隙率较小,且易形成闭合孔[49]。对于无定型聚合物材料,利用此法则比较容易发泡。Mooney等[50]采用该法将聚(乳酸-羟基乙酸)共聚物固体室温暴露于5.5 MPa高压CO2气体72 h达溶解饱和,然后将气压降至大气压水平,随着聚合物中CO2溶解度的迅速下降而产生大量的CO2气腔,最后形成孔径约 100 μm,孔隙率达93%多孔泡沫样结构。Singh等[48]采用超临界CO2作为致孔剂,制备出了孔间相互连通,孔隙度高达89%,孔径范围30-100 μm的聚(乳酸-羟基乙酸)共聚物支架。 为解决采用发泡法制备的支架中存在的闭孔问题,常常将其与粒子沥滤法相结合使用[51],可以制备出性能较好的支架。Yoon等[52-53]采用气体发泡/盐浸的方法制备了高度多孔的PLGA生物支架,很好地解决了支架结构的闭孔问题。Ju等[54]采用该方法制得孔隙率在87%-93%,孔径大小在100-300 mm之间的复合有氨基酸的左旋聚乳酸支架,与未复合氨基酸的左旋聚乳酸支架相比能更好地促进软骨细胞的黏附和增殖。 化学发泡法主要是将聚合物溶液和碳酸盐类化合物混合后浇铸成型,待有机溶剂挥发后再进行加热处理,最后经冷冻干燥而制得支架[55]。将可以产生气体的化合物代替氯化钠作为致孔剂目前被广泛用来制备多孔支架[56-57],它能同时起到发泡剂和致孔剂的作用,在实际操作中既可单独使用,也可以和氯化钠配合使用。Lee等[58]利用制热碳酸氢铵分解出CO2和NH3采用气体发泡并结合其他方法曾经制备了左旋聚乳酸纳米-微米双重孔结构的多孔支架。同理,也可以单独使用碳酸氢铵作为发泡剂及致孔剂制得所需的支架样品。Lin等[56]利用不同比例的碳酸氢铵和氯化钠作致孔剂,通过此法制备出所需支架。 以上研究表明,沥滤法和发泡法结合使用保留了传统沥滤法的优点,并且无机盐滤除更快更彻底,同时又具有良好的孔-孔连通性。"
[1]Hunziker EB.Articularcartilagerepair:basicscienceand clinicalprogress. Areviewofthecurrentstatusandprospects. Osteoarthritis Cartilage.2002;10(6):432-463.[2]AlsbergE, AndersonKW, AlbeirutiA, et al. Engineering growing tissues. ProcNatlAcadSci USA. 2002; 99(19):12025-12030.[3]Risbud MV, Sittinger M. Tissue engineering:advances in invitro cartilage generation.TrendsBiotechnol. 2002;20 (8): 351-356.[4]Grande DA, Breitbart AS, Mason J, et al. Cartilage tissue engineering:current limitations and solutions.Clin Orthop. 1999;367(Suppl):S176-S185.[5]Klein TJ, Malda J, Sah RL, et al.Tissue engineering of articular cartilage with biomimetic zones.Tissue Eng Part B Rev.2009;15(2):143-157.[6]Harris JD, Siston RA, Pan X, et al. Autologous chondrocyte implantation: a systematic review.J Bone Joint Surg Am. 2010;92(12):2220-2223.[7]Hellman KB. Bioartificial organs as outcomes of tissue engineering.Ann NY Aca Sci.1997;831:129.[8]Langer R. Tissue engineering.Science.1993;260:920-926.[9]李志义,丁兆红,刘志军.新一代组织工程细胞支架的研究进展[J].组织工程与重建外科杂志,2012,8(3):167-171.[10]鄂征,刘流.医学组织工程技术与临床应用[M].北京:北京出版社, 2003:378-379.[11]欧阳彬,范卫民,马益民,等.壳聚糖?Ⅱ型胶原和PGA三种支架体外构建组织工程软骨的比较研究[J].江苏医药,2007,33(9): 904-906.[12]崔玉明,伍骥,胡蕴玉.聚乳酸聚羟基乙酸复合骨形成蛋白修复兔关节软骨缺损[J].中国修复重建外科杂志,2007,21(11): 1233-1237.[13]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展[J].功能高分子学报,2003,16(1):91-96.[14]Fan H,Tao H,Wu Y,et al.TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration.J Biomed Mater Res A. 2010;95(4):982-992.[15]邓天政,吕晶,杨捷绯,等.体外构建组织工程骨-软骨复合组织[J].中国组织工程研究,2013,17(8):1354-1361.[16]Raghunath J,Rollo J,Sales KM,et al.Biomaterials and scaffold design:key to tissue-engineering cartilage.Biotechnol Appl Biochem.2007;46(Pt 2):73-84.[17]VinatierC,Magne D,Weiss P,et al.A silanizedhydroxypropyl methylcellulose hydrogel for thethree-dimensional culture of chondrocytes.Biomaterials. 2005;26(33):6643-6651.[18]Hong Y,Gong Y,Gao C,et al.Covalently crosslinkedchitosan hydrogel:properties of in vitro degradation and chondrocyte encapsulation.Acta Biomater. 2007;3(1):23-31.[19]Yang X,Guo L,Fan Y,et al. Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol. 2013;61: 487-493.[20]Zein I,Hutmacher DW,Tan KC,et al.Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials.2002;23:1169-1185.[21]Seyednejad H,Gawlitta D,Dhert WJA,et al.Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.Acta Biomaterialia.2011;7:1999-2006.[22]Seyednejad H,Gawlitta D,Kuiper RV,et al.In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials.2012;33:4309-4318.[23]Cao T,Ho KH,Teoh SH.Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling.Tissue Eng.2003;9:S103-S112.[24]Williams JM,Adewunmi A,Schek RM,et al.Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.Biomaterials.2005;26:4817-4827.[25]贺超良,汤朝晖,田华雨,等.3D打印技术制备生物医用高分子材料的研究进展[J].高分子学报,2013,57(6):722-731.[26]Park A,Wu B,Griffith LG.Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion.J Biomater Sci Polym Ed.1998;9(2):89-110.[27]Schek RM,Taboas JM,Segvich SJ,et al.Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds.Tissue Eng. 2004;10(9-10):1376-1385.[28]Fedorovich NE,Swennen I,Girones J,et al.Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications.Biomacromolecules.2009;10:1689-1696.[29]Cui X,Breitenkamp K,Finn MG,et al.Direct human cartilage repair using three-dimensional bioprinting technology.Tissue Eng Part A.2012;18(11-12):1304-1312.[30]Li WJ,Tuli R,Huang X,et al.Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold.Biomaterials.2005;26(25):158-5166.[31]Jiang HL,Hu YQ,Zhao PC,et al.Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning.J Biomed Mater Res.2006;79(1): 50-57.[32]Raghunath J,Rollo J,Sales KM,et al.Biomaterials and scaffold design:key to tissue-engineering cartilage.Biotechnol Appl Biochem.2007;46(Pt 2):73-84.[33]Mikos AG,Sarakinos G,Leite SM,et al.Laminated three-dimensional biodegradable foams for use in tissue engineering.Biomaterials. 1993;14(5):323-330.[34]MikosAG, ThorsenAJ, CzerwonkaLA, et al. Preparation and characterization of poly(l-lactic acid) foams.Polymer. 1994; 35(5):1068-1077.[35]Lee WK,Ichi T,Ooya T,et al.Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.J Biomed Mater Res A.2003; 67(4):1087-1092.[36]李国义,梁传余,郑艳,等.软骨组织工程管状泡沫支架的研制[J].山东大学基础医学院学报,2004,18(6):361-363.[37]吴述平,龚兴厚,张裕刚,等.组织工程用可生物降解聚合物多孔支架制备方法研究进展[J].高分子通报,2010,23(5):61-66.[38]罗丙红,卢泽俭.组织工程用高度多孔生物可降解支架的制备[J].国外医学:生物医学工程分册,2001,24(4):154-158.[39]Gross KA,Rodríguez-Lorenzo LM.Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.Biomaterials.2004;25(20):4955-4962.[40]Shokrolahi F, Mirzadeh H, Yeganeh H."Fabrication of Poly(urethane urea)-based Scaffolds for Bone Tissue Engineering by a Combined Strategy of Using Compression Moulding and Particulate Leaching Methods.Iran Polym J. 2011; 20(8):645-658.[41]Gong YH,Ma ZW,Zhou QL,et al.Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. J Biomater Sci Polymer Ed.2008;19(2):207-221.[42]Oh SH, Kang SG, Kim ES,et al.Fabrication and characterization of hydrophilicpoly (lactic-co- glycolicacid)/ poly(vinylalcohol) blendcellscaffolds by melt-moldingparticulate- leachingmethod.Biomaterials.2003;24(22):4011-4021.[43]任杰,吴志刚,贾晓真.PLA-PEG共聚物三维多孔支架的制备及表征[J].材料导报,2004,18(3):93-95.[44]Chen G,Ushida T,Tateishi T.A biodegradable hybrid sponge nested with collagen microsponges.J Biomed Mater Res. 2000; 51(2):273-279.[45]孙浩.骨组织工程用聚乳酸类多孔支架的制备研究[D].南京:东南大学, 2006:1-52.[46]Hou QP,Grijpma DW,Jan FJ.Porous polymeric structures for tissue engineering prepared by a coagulation,compression moulding and salt leaching technique.Biomaterials.2003;24(11):1937-1947.[47]Mooney D,Baldwin DF,Suh NP,et al.Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.Biomaterials.1996;17(14): 1417-1422.[48]Singh L,Kumar V,Ratner BD.Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials.2004;25:2611-2617.[49]Quirk RA,France RM,Shakesheff KM,et al.Supercritical fluid technologies and tissue engineering scaffolds.Curr Opin Solid State Mater Sci.2010;8(4):425-434.[50]Mooney DJ,Baldwin DF,Suh NP,et al.Novel approach to fabricate porous sponges ofpoly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17(14): 1417-1422.[51]Yoon JJ,Kim JH,Park TG.Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/ salt-leaching method.Biomaterials.2003;24:2323-2329.[52]Yoon JJ,Song SH,Lee DS,et al.Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials. 2004;25 (25): 5613-5620.[53]Harris LD,Kim BS,Mooney DJ.Open pore biodegradable matrices formed with gas foaming.J Biomed Mater Res.1998; 42(3):396-402.[54]Ju YM,Park K,Son JS,et al.Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation.J Biomed Mater Res B Appl Biomater.2008;85(1): 252-260.[55]Nam YS,Yoon JJ,Park TG.A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.J Biomed Mater Res. 2000;53(1):1-7.[56]Lin HR,Kuo CJ,Yang CY,et al.Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives.J Biomed Mater Res. 2002;63(3):271-279.[57]Lim YM,Gwon HJ,Shin JW. Preparation of porous poly(?-caprolactone) scaffolds by gas foaming process and in vitro/in vivo degradation behavior using γ-ray irradiation.J Ind Eng Chem.2008;14(4):436-441.[58]Lee YH,Lee JH,An IG,et al.Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005;26(16):3165-3172.[59]Bose S,Darsell J,Kintner M,et al.Pore size and pore volume effects on alumina and TCP ceramic scaffolds.MaterSci EngC.2003;23(4):479-486.[60]Hunziker EB,Driesang IM.Functional barrier principle for growth-factor-based articular cartilage repair.Osteoarthritis Cartilage. 2003;11(5):320-327.[61]Salerno A,Guarnieri D,Iannone M.Engineered mu-bimodal poly(epsilon-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation.Acta Biomaterialia. 2009;5(4):1082-1093.[62]Guan J,Fujimoto KL,Sacks MS.Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26: 3961-3971.[63]Ho MH,Kuo PY,Hsieh HJ.Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25:129-138.[64]Neves NM,Kouyamdzhiev A,Reis RL.The morphology, mechanical properties and ageing behavior of porous injection molded starch-based blends for tissue engineering scaffolding.Mater Sci Eng C.2005;25:195-200. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Wu Xun, Meng Juanhong, Zhang Jianyun, Wang Liang. Concentrated growth factors in the repair of a full-thickness condylar cartilage defect in a rabbit [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1166-1171. |
[3] | Li Jiacheng, Liang Xuezhen, Liu Jinbao, Xu Bo, Li Gang. Differential mRNA expression profile and competitive endogenous RNA regulatory network in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1212-1217. |
[4] | Geng Qiudong, Ge Haiya, Wang Heming, Li Nan. Role and mechanism of Guilu Erxianjiao in treatment of osteoarthritis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1229-1236. |
[5] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[6] | He Xiangzhong, Chen Haiyun, Liu Jun, Lü Yang, Pan Jianke, Yang Wenbin, He Jingwen, Huang Junhan. Platelet-rich plasma combined with microfracture versus microfracture in the treatment of knee cartilage lesions: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 964-969. |
[7] | Liu Xin, Yan Feihua, Hong Kunhao. Delaying cartilage degeneration by regulating the expression of aquaporins in rats with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 668-673. |
[8] | Deng Zhenhan, Huang Yong, Xiao Lulu, Chen Yulin, Zhu Weimin, Lu Wei, Wang Daping. Role and application of bone morphogenetic proteins in articular cartilage regeneration [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 798-806. |
[9] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[10] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[11] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[12] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[13] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[14] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[15] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||